Cargando…

Dynamic Contrast-Enhanced MR Imaging in a Phase Ⅱ Study on Neoadjuvant Chemotherapy Combining Rh-Endostatin with Docetaxel and Epirubicin for Locally Advanced Breast Cancer

Background: Anti-angiogenesis is a promising therapeutic strategy for locally advanced breast cancer. We performed this phase II trial to evaluate the anti-angiogenesis and anti-tumor effect of rh-endostatin combined with docetaxel and epirubicin in patients with locally advanced breast cancer by dy...

Descripción completa

Detalles Bibliográficos
Autores principales: Jia, Qianxin, Xu, Junqing, Jiang, Weifeng, Zheng, Minwen, Wei, Mengqi, Chen, Jianghao, Wang, Ling, Huan, Yi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Ivyspring International Publisher 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3547207/
https://www.ncbi.nlm.nih.gov/pubmed/23329881
http://dx.doi.org/10.7150/ijms.5123
Descripción
Sumario:Background: Anti-angiogenesis is a promising therapeutic strategy for locally advanced breast cancer. We performed this phase II trial to evaluate the anti-angiogenesis and anti-tumor effect of rh-endostatin combined with docetaxel and epirubicin in patients with locally advanced breast cancer by dynamic contrast-enhanced magnetic resonance imaging in 70 previously untreated locally advanced breast cancer patients. Methods: The study population was randomly assigned to neoadjuvant chemotherapy with docetaxel and epirubicin (neoadjuvant chemotherapy group) or neoadjuvant chemotherapy combining rh-endostatin with docetaxel and epirubicin (neoadjuvant chemotherapy+rh-endostatin group). The anti-angiogenic and anti-tumor effects of both regimens were evaluated by serial dynamic contrast-enhanced magnetic resonance imaging and microvessel density measurements after final surgery. Results: The results suggested a higher clinical objective response (90.9% vs. 67.7%, P = 0.021) and greater reductions in tumor size (67.2% vs. 55.9%, P = 0.000), Ki-67 proliferation index (32.79% vs. 12.47%, P = 0.000), tumor signal enhanced ratio (64% vs. 48%, P = 0.018), and K(trans) (67% vs. 39%, P = 0.026) in neoadjuvant chemotherapy+rh-endostatin group than those in neoadjuvant chemotherapy group. In addition, the microvessel density value in the neoadjuvant chemotherapy+rh-endostatin group was significantly lower than in the neoadjuvant chemotherapy group (18.67 ± 6.53 vs. 36.05 ± 9.64, P = 0.000). Moreover, the microvessel density value was significantly correlated with K(trans) after neoadjuvant chemotherapy+rh-endostatin treatment (r=0.88, P = 0.00). Conclusions: The neoadjuvant chemotherapy+rh-endostatin treatment significantly repressed angiogenesis in locally advanced breast cancer and synergistically enhanced the anti-tumor effect of neoadjuvant chemotherapy. Serial dynamic contrast-enhanced magnetic resonance imaging data including reductions in tumor size and K(trans), could provide non-invasive evaluation for chemotherapeutic efficacy and, consequently, optimization of individual chemotherapy for locally advanced breast cancer patients.