Cargando…

Protein kinase C signaling and cell cycle regulation

A link between T cell proliferation and the protein kinase C (PKC) family of serine/threonine kinases has been recognized for about 30 years. However, despite the wealth of information on PKC-mediated control of, T cell activation, understanding of the effects of PKCs on the cell cycle machinery in...

Descripción completa

Detalles Bibliográficos
Autores principales: Black, Adrian R., Black, Jennifer D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3547298/
https://www.ncbi.nlm.nih.gov/pubmed/23335926
http://dx.doi.org/10.3389/fimmu.2012.00423
_version_ 1782256188892643328
author Black, Adrian R.
Black, Jennifer D.
author_facet Black, Adrian R.
Black, Jennifer D.
author_sort Black, Adrian R.
collection PubMed
description A link between T cell proliferation and the protein kinase C (PKC) family of serine/threonine kinases has been recognized for about 30 years. However, despite the wealth of information on PKC-mediated control of, T cell activation, understanding of the effects of PKCs on the cell cycle machinery in this cell type remains limited. Studies in other systems have revealed important cell cycle-specific effects of PKC signaling that can either positively or negatively impact proliferation. The outcome of PKC activation is highly context-dependent, with the precise cell cycle target(s) and overall effects determined by the specific isozyme involved, the timing of PKC activation, the cell type, and the signaling environment. Although PKCs can regulate all stages of the cell cycle, they appear to predominantly affect G0/G1 and G2. PKCs can modulate multiple cell cycle regulatory molecules, including cyclins, cyclin-dependent kinases (cdks), cdk inhibitors and cdc25 phosphatases; however, evidence points to Cip/Kip cdk inhibitors and D-type cyclins as key mediators of PKC-regulated cell cycle-specific effects. Several PKC isozymes can target Cip/Kip proteins to control G0/G1 → S and/or G2 → M transit, while effects on D-type cyclins regulate entry into and progression through G1. Analysis of PKC signaling in T cells has largely focused on its roles in T cell activation; thus, observed cell cycle effects are mainly positive. A prominent role is emerging for PKCθ, with non-redundant functions of other isozymes also described. Additional evidence points to PKCδ as a negative regulator of the cell cycle in these cells. As in other cell types, context-dependent effects of individual isozymes have been noted in T cells, and Cip/Kip cdk inhibitors and D-type cyclins appear to be major PKC targets. Future studies are anticipated to take advantage of the similarities between these various systems to enhance understanding of PKC-mediated cell cycle regulation in T cells.
format Online
Article
Text
id pubmed-3547298
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-35472982013-01-18 Protein kinase C signaling and cell cycle regulation Black, Adrian R. Black, Jennifer D. Front Immunol Immunology A link between T cell proliferation and the protein kinase C (PKC) family of serine/threonine kinases has been recognized for about 30 years. However, despite the wealth of information on PKC-mediated control of, T cell activation, understanding of the effects of PKCs on the cell cycle machinery in this cell type remains limited. Studies in other systems have revealed important cell cycle-specific effects of PKC signaling that can either positively or negatively impact proliferation. The outcome of PKC activation is highly context-dependent, with the precise cell cycle target(s) and overall effects determined by the specific isozyme involved, the timing of PKC activation, the cell type, and the signaling environment. Although PKCs can regulate all stages of the cell cycle, they appear to predominantly affect G0/G1 and G2. PKCs can modulate multiple cell cycle regulatory molecules, including cyclins, cyclin-dependent kinases (cdks), cdk inhibitors and cdc25 phosphatases; however, evidence points to Cip/Kip cdk inhibitors and D-type cyclins as key mediators of PKC-regulated cell cycle-specific effects. Several PKC isozymes can target Cip/Kip proteins to control G0/G1 → S and/or G2 → M transit, while effects on D-type cyclins regulate entry into and progression through G1. Analysis of PKC signaling in T cells has largely focused on its roles in T cell activation; thus, observed cell cycle effects are mainly positive. A prominent role is emerging for PKCθ, with non-redundant functions of other isozymes also described. Additional evidence points to PKCδ as a negative regulator of the cell cycle in these cells. As in other cell types, context-dependent effects of individual isozymes have been noted in T cells, and Cip/Kip cdk inhibitors and D-type cyclins appear to be major PKC targets. Future studies are anticipated to take advantage of the similarities between these various systems to enhance understanding of PKC-mediated cell cycle regulation in T cells. Frontiers Media S.A. 2013-01-17 /pmc/articles/PMC3547298/ /pubmed/23335926 http://dx.doi.org/10.3389/fimmu.2012.00423 Text en Copyright © Black and Black. http://creativecommons.org/licenses/by/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc.
spellingShingle Immunology
Black, Adrian R.
Black, Jennifer D.
Protein kinase C signaling and cell cycle regulation
title Protein kinase C signaling and cell cycle regulation
title_full Protein kinase C signaling and cell cycle regulation
title_fullStr Protein kinase C signaling and cell cycle regulation
title_full_unstemmed Protein kinase C signaling and cell cycle regulation
title_short Protein kinase C signaling and cell cycle regulation
title_sort protein kinase c signaling and cell cycle regulation
topic Immunology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3547298/
https://www.ncbi.nlm.nih.gov/pubmed/23335926
http://dx.doi.org/10.3389/fimmu.2012.00423
work_keys_str_mv AT blackadrianr proteinkinasecsignalingandcellcycleregulation
AT blackjenniferd proteinkinasecsignalingandcellcycleregulation