Cargando…

Comparison of contact angle hysteresis of different probe liquids on the same solid surface

Advancing and receding contact angles of water, formamide and diiodomethane were measured on 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) layers deposited on three different solid supports—glass, mica and poly(methyl methacrylate). Up to five statistical monolayers were deposited on the surfac...

Descripción completa

Detalles Bibliográficos
Autores principales: Chibowski, Emil, Jurak, Malgorzata
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer-Verlag 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3548097/
https://www.ncbi.nlm.nih.gov/pubmed/23335833
http://dx.doi.org/10.1007/s00396-012-2777-9
Descripción
Sumario:Advancing and receding contact angles of water, formamide and diiodomethane were measured on 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) layers deposited on three different solid supports—glass, mica and poly(methyl methacrylate). Up to five statistical monolayers were deposited on the surfaces by spreading DPPC solution. It was found that even on five statistical DPPC monolayers, the hysteresis of a given liquid depends on the kind of solid support. Also on the same solid support the contact angle hysteresis is different for each probe liquid used. The AFM images show that the heights of roughness of the DPPC films cannot be the primary cause of the observed hysteresis because the heights are too small to cause the observed hystereses. It is believed that the hysteresis is due to the liquid film present right behind the three-phase solid surface/liquid drop/gas (vapour) contact line and the presence of Derjaguin pressure. The value of contact angle hysteresis depends on both the solid surface and liquid properties as well as on intermolecular interactions between them.