Cargando…
An electrophysiological validation of stochastic DCM for fMRI
In this note, we assess the predictive validity of stochastic dynamic causal modeling (sDCM) of functional magnetic resonance imaging (fMRI) data, in terms of its ability to explain changes in the frequency spectrum of concurrently acquired electroencephalography (EEG) signal. We first revisit the h...
Autores principales: | Daunizeau, J., Lemieux, L., Vaudano, A. E., Friston, K. J., Stephan, K. E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3548242/ https://www.ncbi.nlm.nih.gov/pubmed/23346055 http://dx.doi.org/10.3389/fncom.2012.00103 |
Ejemplares similares
-
Construct validation of a DCM for resting state fMRI
por: Razi, Adeel, et al.
Publicado: (2015) -
A DCM for resting state fMRI
por: Friston, Karl J., et al.
Publicado: (2014) -
Stochastic dynamic causal modelling of fMRI data: Should we care about neural noise?
por: Daunizeau, J., et al.
Publicado: (2012) -
Network discovery with DCM
por: Friston, Karl J., et al.
Publicado: (2011) -
Causality within the Epileptic Network: An EEG-fMRI Study Validated by Intracranial EEG
por: Vaudano, Anna Elisabetta, et al.
Publicado: (2013)