Cargando…

PPInterFinder—a mining tool for extracting causal relations on human proteins from literature

One of the most common and challenging problem in biomedical text mining is to mine protein–protein interactions (PPIs) from MEDLINE abstracts and full-text research articles because PPIs play a major role in understanding the various biological processes and the impact of proteins in diseases. We i...

Descripción completa

Detalles Bibliográficos
Autores principales: Raja, Kalpana, Subramani, Suresh, Natarajan, Jeyakumar
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3548331/
https://www.ncbi.nlm.nih.gov/pubmed/23325628
http://dx.doi.org/10.1093/database/bas052
Descripción
Sumario:One of the most common and challenging problem in biomedical text mining is to mine protein–protein interactions (PPIs) from MEDLINE abstracts and full-text research articles because PPIs play a major role in understanding the various biological processes and the impact of proteins in diseases. We implemented, PPInterFinder—a web-based text mining tool to extract human PPIs from biomedical literature. PPInterFinder uses relation keyword co-occurrences with protein names to extract information on PPIs from MEDLINE abstracts and consists of three phases. First, it identifies the relation keyword using a parser with Tregex and a relation keyword dictionary. Next, it automatically identifies the candidate PPI pairs with a set of rules related to PPI recognition. Finally, it extracts the relations by matching the sentence with a set of 11 specific patterns based on the syntactic nature of PPI pair. We find that PPInterFinder is capable of predicting PPIs with the accuracy of 66.05% on AIMED corpus and outperforms most of the existing systems. Database URL: http://www.biomining-bu.in/ppinterfinder/