Cargando…
A negative selection heuristic to predict new transcriptional targets
BACKGROUND: Supervised machine learning approaches have been recently adopted in the inference of transcriptional targets from high throughput trascriptomic and proteomic data showing major improvements from with respect to the state of the art of reverse gene regulatory network methods. Beside trad...
Autores principales: | Cerulo, Luigi, Paduano, Vincenzo, Zoppoli, Pietro, Ceccarelli, Michele |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3548675/ https://www.ncbi.nlm.nih.gov/pubmed/23368951 http://dx.doi.org/10.1186/1471-2105-14-S1-S3 |
Ejemplares similares
-
Identification of a Novel Gene Signature of ES Cells Self-Renewal Fluctuation through System-Wide Analysis
por: Cerulo, Luigi, et al.
Publicado: (2014) -
Identification of long non-coding transcripts with feature selection: a comparative study
por: Ventola, Giovanna M. M., et al.
Publicado: (2017) -
Deep learning predicts short non-coding RNA functions from only raw sequence data
por: Noviello, Teresa Maria Rosaria, et al.
Publicado: (2020) -
Ensemble of Gene Signatures Identifies Novel Biomarkers in Colorectal Cancer Activated through PPARγ and TNFα Signaling
por: Pagnotta, Stefano Maria, et al.
Publicado: (2013) -
A review of COVID-19 biomarkers and drug targets: resources and tools
por: Caruso, Francesca P, et al.
Publicado: (2020)