Cargando…
An extensible six-step methodology to automatically generate fuzzy DSSs for diagnostic applications
BACKGROUND: The diagnosis of many diseases can be often formulated as a decision problem; uncertainty affects these problems so that many computerized Diagnostic Decision Support Systems (in the following, DDSSs) have been developed to aid the physician in interpreting clinical data and thus to impr...
Autores principales: | d'Acierno, Antonio, Esposito, Massimo, De Pietro, Giuseppe |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3548688/ https://www.ncbi.nlm.nih.gov/pubmed/23368970 http://dx.doi.org/10.1186/1471-2105-14-S1-S4 |
Ejemplares similares
-
DSSS Signal Detection Based on CNN
por: Gu, Han-Qing, et al.
Publicado: (2023) -
Study of the Performance of DSSS UAC System Depending on the System Bandwidth and the Spreading Sequence
por: Kochanska, Iwona, et al.
Publicado: (2021) -
PS230. Korean Version of the Psychometric Properties of Depression and Somatic Symptoms Scale (DSSS) in Psychiatric Outpatients
por: Ko, Young-Hoon, et al.
Publicado: (2016) -
Blind Estimation of the PN Sequence of A DSSS Signal Using A Modified Online Unsupervised Learning Machine
por: Wei, Yangjie, et al.
Publicado: (2019) -
A scale space approach for unsupervised feature selection in mass spectra classification for ovarian cancer detection
por: Ceccarelli, Michele, et al.
Publicado: (2009)