Cargando…
Finding reproducible cluster partitions for the k-means algorithm
K-means clustering is widely used for exploratory data analysis. While its dependence on initialisation is well-known, it is common practice to assume that the partition with lowest sum-of-squares (SSQ) total i.e. within cluster variance, is both reproducible under repeated initialisations and also...
Autores principales: | Lisboa, Paulo JG, Etchells, Terence A, Jarman, Ian H, Chambers, Simon J |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3548705/ https://www.ncbi.nlm.nih.gov/pubmed/23369085 http://dx.doi.org/10.1186/1471-2105-14-S1-S8 |
Ejemplares similares
-
How to find simple and accurate rules for viral protease cleavage specificities
por: Rögnvaldsson, Thorsteinn, et al.
Publicado: (2009) -
Partitional clustering algorithms
por: Celebi, M
Publicado: (2015) -
Finding the mean in a partition distribution
por: Glassen, Thomas J., et al.
Publicado: (2018) -
Clustering Using Boosted Constrained k-Means Algorithm
por: Okabe, Masayuki, et al.
Publicado: (2018) -
On Finding and Enumerating Maximal and Maximum k-Partite Cliques in k-Partite Graphs
por: Phillips, Charles A., et al.
Publicado: (2019)