Cargando…

Clinical and multiple gene expression variables in survival analysis of breast cancer: Analysis with the hypertabastic survival model

BACKGROUND: We explore the benefits of applying a new proportional hazard model to analyze survival of breast cancer patients. As a parametric model, the hypertabastic survival model offers a closer fit to experimental data than Cox regression, and furthermore provides explicit survival and hazard f...

Descripción completa

Detalles Bibliográficos
Autores principales: Tabatabai, Mohammad A, Eby, Wayne M, Nimeh, Nadim, Li, Hong, Singh, Karan P
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3548720/
https://www.ncbi.nlm.nih.gov/pubmed/23241496
http://dx.doi.org/10.1186/1755-8794-5-63
_version_ 1782256355013296128
author Tabatabai, Mohammad A
Eby, Wayne M
Nimeh, Nadim
Li, Hong
Singh, Karan P
author_facet Tabatabai, Mohammad A
Eby, Wayne M
Nimeh, Nadim
Li, Hong
Singh, Karan P
author_sort Tabatabai, Mohammad A
collection PubMed
description BACKGROUND: We explore the benefits of applying a new proportional hazard model to analyze survival of breast cancer patients. As a parametric model, the hypertabastic survival model offers a closer fit to experimental data than Cox regression, and furthermore provides explicit survival and hazard functions which can be used as additional tools in the survival analysis. In addition, one of our main concerns is utilization of multiple gene expression variables. Our analysis treats the important issue of interaction of different gene signatures in the survival analysis. METHODS: The hypertabastic proportional hazards model was applied in survival analysis of breast cancer patients. This model was compared, using statistical measures of goodness of fit, with models based on the semi-parametric Cox proportional hazards model and the parametric log-logistic and Weibull models. The explicit functions for hazard and survival were then used to analyze the dynamic behavior of hazard and survival functions. RESULTS: The hypertabastic model provided the best fit among all the models considered. Use of multiple gene expression variables also provided a considerable improvement in the goodness of fit of the model, as compared to use of only one. By utilizing the explicit survival and hazard functions provided by the model, we were able to determine the magnitude of the maximum rate of increase in hazard, and the maximum rate of decrease in survival, as well as the times when these occurred. We explore the influence of each gene expression variable on these extrema. Furthermore, in the cases of continuous gene expression variables, represented by a measure of correlation, we were able to investigate the dynamics with respect to changes in gene expression. CONCLUSIONS: We observed that use of three different gene signatures in the model provided a greater combined effect and allowed us to assess the relative importance of each in determination of outcome in this data set. These results point to the potential to combine gene signatures to a greater effect in cases where each gene signature represents some distinct aspect of the cancer biology. Furthermore we conclude that the hypertabastic survival models can be an effective survival analysis tool for breast cancer patients.
format Online
Article
Text
id pubmed-3548720
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-35487202013-02-04 Clinical and multiple gene expression variables in survival analysis of breast cancer: Analysis with the hypertabastic survival model Tabatabai, Mohammad A Eby, Wayne M Nimeh, Nadim Li, Hong Singh, Karan P BMC Med Genomics Research Article BACKGROUND: We explore the benefits of applying a new proportional hazard model to analyze survival of breast cancer patients. As a parametric model, the hypertabastic survival model offers a closer fit to experimental data than Cox regression, and furthermore provides explicit survival and hazard functions which can be used as additional tools in the survival analysis. In addition, one of our main concerns is utilization of multiple gene expression variables. Our analysis treats the important issue of interaction of different gene signatures in the survival analysis. METHODS: The hypertabastic proportional hazards model was applied in survival analysis of breast cancer patients. This model was compared, using statistical measures of goodness of fit, with models based on the semi-parametric Cox proportional hazards model and the parametric log-logistic and Weibull models. The explicit functions for hazard and survival were then used to analyze the dynamic behavior of hazard and survival functions. RESULTS: The hypertabastic model provided the best fit among all the models considered. Use of multiple gene expression variables also provided a considerable improvement in the goodness of fit of the model, as compared to use of only one. By utilizing the explicit survival and hazard functions provided by the model, we were able to determine the magnitude of the maximum rate of increase in hazard, and the maximum rate of decrease in survival, as well as the times when these occurred. We explore the influence of each gene expression variable on these extrema. Furthermore, in the cases of continuous gene expression variables, represented by a measure of correlation, we were able to investigate the dynamics with respect to changes in gene expression. CONCLUSIONS: We observed that use of three different gene signatures in the model provided a greater combined effect and allowed us to assess the relative importance of each in determination of outcome in this data set. These results point to the potential to combine gene signatures to a greater effect in cases where each gene signature represents some distinct aspect of the cancer biology. Furthermore we conclude that the hypertabastic survival models can be an effective survival analysis tool for breast cancer patients. BioMed Central 2012-12-14 /pmc/articles/PMC3548720/ /pubmed/23241496 http://dx.doi.org/10.1186/1755-8794-5-63 Text en Copyright ©2012 Tabatabai et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Tabatabai, Mohammad A
Eby, Wayne M
Nimeh, Nadim
Li, Hong
Singh, Karan P
Clinical and multiple gene expression variables in survival analysis of breast cancer: Analysis with the hypertabastic survival model
title Clinical and multiple gene expression variables in survival analysis of breast cancer: Analysis with the hypertabastic survival model
title_full Clinical and multiple gene expression variables in survival analysis of breast cancer: Analysis with the hypertabastic survival model
title_fullStr Clinical and multiple gene expression variables in survival analysis of breast cancer: Analysis with the hypertabastic survival model
title_full_unstemmed Clinical and multiple gene expression variables in survival analysis of breast cancer: Analysis with the hypertabastic survival model
title_short Clinical and multiple gene expression variables in survival analysis of breast cancer: Analysis with the hypertabastic survival model
title_sort clinical and multiple gene expression variables in survival analysis of breast cancer: analysis with the hypertabastic survival model
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3548720/
https://www.ncbi.nlm.nih.gov/pubmed/23241496
http://dx.doi.org/10.1186/1755-8794-5-63
work_keys_str_mv AT tabatabaimohammada clinicalandmultiplegeneexpressionvariablesinsurvivalanalysisofbreastcanceranalysiswiththehypertabasticsurvivalmodel
AT ebywaynem clinicalandmultiplegeneexpressionvariablesinsurvivalanalysisofbreastcanceranalysiswiththehypertabasticsurvivalmodel
AT nimehnadim clinicalandmultiplegeneexpressionvariablesinsurvivalanalysisofbreastcanceranalysiswiththehypertabasticsurvivalmodel
AT lihong clinicalandmultiplegeneexpressionvariablesinsurvivalanalysisofbreastcanceranalysiswiththehypertabasticsurvivalmodel
AT singhkaranp clinicalandmultiplegeneexpressionvariablesinsurvivalanalysisofbreastcanceranalysiswiththehypertabasticsurvivalmodel