Cargando…

Controlled Release of Simvastatin from Biomimetic β-TCP Drug Delivery System

Simvastatin have been shown to induce bone formation and there is currently a urgent need to develop an appropriate delivery system to sustain the release of the drug to increase therapeutic efficacy whilst reducing side effects. In this study, a novel drug delivery system for simvastatin by means o...

Descripción completa

Detalles Bibliográficos
Autores principales: Chou, Joshua, Ito, Tomoko, Bishop, David, Otsuka, Makoto, Ben-Nissan, Besim, Milthorpe, Bruce
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3548800/
https://www.ncbi.nlm.nih.gov/pubmed/23349949
http://dx.doi.org/10.1371/journal.pone.0054676
Descripción
Sumario:Simvastatin have been shown to induce bone formation and there is currently a urgent need to develop an appropriate delivery system to sustain the release of the drug to increase therapeutic efficacy whilst reducing side effects. In this study, a novel drug delivery system for simvastatin by means of hydrothermally converting marine exoskeletons to biocompatible beta-tricalcium phosphate was investigated. Furthermore, the release of simvastatin was controlled by the addition of an outer apatite coating layer. The samples were characterized by x-ray diffraction analysis, fourier transform infrared spectroscopy, scanning electron microscopy and mass spectroscopy confirming the conversion process. The in-vitro dissolution of key chemical compositional elements and the release of simvastatin were measured in simulated body fluid solution showing controlled release with reduction of approximately 25% compared with un-coated samples. This study shows the potential applications of marine structures as a drug delivery system for simvastatin.