Cargando…

In silico directed mutagenesis identifies the CD81/claudin-1 hepatitis C virus receptor interface

Hepatitis C virus (HCV) entry is dependent on host cell molecules tetraspanin CD81, scavenger receptor BI and tight junction proteins claudin-1 and occludin. We previously reported a role for CD81/claudin-1 receptor complexes in HCV entry; however, the molecular mechanism(s) driving association betw...

Descripción completa

Detalles Bibliográficos
Autores principales: Davis, Christopher, Harris, Helen J, Hu, Ke, Drummer, Heidi E, McKeating, Jane A, Mullins, Jonathan G L, Balfe, Peter
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Blackwell Publishing Ltd 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3549482/
https://www.ncbi.nlm.nih.gov/pubmed/22897233
http://dx.doi.org/10.1111/cmi.12008
Descripción
Sumario:Hepatitis C virus (HCV) entry is dependent on host cell molecules tetraspanin CD81, scavenger receptor BI and tight junction proteins claudin-1 and occludin. We previously reported a role for CD81/claudin-1 receptor complexes in HCV entry; however, the molecular mechanism(s) driving association between the receptors is unknown. We explored the molecular interface between CD81 and claudin-1 using a combination of bioinformatic sequence-based modelling, site-directed mutagenesis and Fluorescent Resonance Energy Transfer (FRET) imaging methodologies. Structural modelling predicts the first extracellular loop of claudin-1 to have a flexible beta conformation and identifies a motif between amino acids 62–66 that interacts with CD81 residues T149, E152 and T153. FRET studies confirm a role for these CD81 residues in claudin-1 association and HCV infection. Importantly, mutation of these CD81 residues has minimal impact on protein conformation or HCVglycoprotein binding, highlighting a new functional domain of CD81 that is essential for virus entry.