Cargando…
The fester locus in Botryllus schlosseri experiences selection
BACKGROUND: Allorecognition, the ability of an organism to distinguish self from non-self, occurs throughout the entire tree of life. Despite the prevalence and importance of allorecognition systems, the genetic basis of allorecognition has rarely been characterized outside the well-known MHC (Major...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3549757/ https://www.ncbi.nlm.nih.gov/pubmed/23259925 http://dx.doi.org/10.1186/1471-2148-12-249 |
_version_ | 1782256462786985984 |
---|---|
author | Nydam, Marie L De Tomaso, Anthony W |
author_facet | Nydam, Marie L De Tomaso, Anthony W |
author_sort | Nydam, Marie L |
collection | PubMed |
description | BACKGROUND: Allorecognition, the ability of an organism to distinguish self from non-self, occurs throughout the entire tree of life. Despite the prevalence and importance of allorecognition systems, the genetic basis of allorecognition has rarely been characterized outside the well-known MHC (Major Histocompatibility Complex) in vertebrates and SI (Self-Incompatibility) in plants. Where loci have been identified, their evolutionary history is an open question. We have previously identified the genes involved in self/non-self recognition in the colonial ascidian Botryllus schlosseri, and we can now begin to investigate their evolution. In B. schlosseri, colonies sharing 1 or more alleles of a gene called FuHC (Fusion Histocompatibility) will fuse. Protein products of a locus called fester, located ~300 kb from FuHC, have been shown to play multiple roles in the histocompatibility reaction, as activating and/or inhibitory receptors. We test whether the proteins encoded by this locus are evolving neutrally or are experiencing balancing, directional, or purifying selection. RESULTS: Nearly all of the variation in the fester locus resides within populations. The 13 housekeeping genes (12 nuclear genes and mitochondrial cytochrome oxidase I) have substantially more structure among populations within groups and among groups than fester. All polymorphism statistics (Tajima's D, Fu and Li's D* and F*) are significantly negative for the East Coast A-type alleles, and Fu and Li's F* statistic is significantly negative for the West Coast A-type alleles. These results are likely due to selection rather than demography, given that 10 of the housekeeping loci have no populations with significant values for any of the polymorphism statistics. The majority of codons in the fester proteins have ω values < 1, but 15–27 codons have > 95% posterior probability of ω values > 1. CONCLUSION: Fester proteins are evolving non-neutrally. The polymorphism statistics are consistent with either purifying selection or directional selection. The ω statistics show that the majority of the protein is experiencing purifying selection (ω < 1), but that 15–27 codons are undergoing either balancing or directional selection: ω > 1 is compatible with either scenario. The distribution of variation within and among populations points towards balancing selection and away from directional selection. While these data do not provide unambiguous support for a specific type of selection, they contribute to our evolutionary understanding of a critical biological process by determining the forces that affect loci involved in allorecognition. |
format | Online Article Text |
id | pubmed-3549757 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-35497572013-01-23 The fester locus in Botryllus schlosseri experiences selection Nydam, Marie L De Tomaso, Anthony W BMC Evol Biol Research Article BACKGROUND: Allorecognition, the ability of an organism to distinguish self from non-self, occurs throughout the entire tree of life. Despite the prevalence and importance of allorecognition systems, the genetic basis of allorecognition has rarely been characterized outside the well-known MHC (Major Histocompatibility Complex) in vertebrates and SI (Self-Incompatibility) in plants. Where loci have been identified, their evolutionary history is an open question. We have previously identified the genes involved in self/non-self recognition in the colonial ascidian Botryllus schlosseri, and we can now begin to investigate their evolution. In B. schlosseri, colonies sharing 1 or more alleles of a gene called FuHC (Fusion Histocompatibility) will fuse. Protein products of a locus called fester, located ~300 kb from FuHC, have been shown to play multiple roles in the histocompatibility reaction, as activating and/or inhibitory receptors. We test whether the proteins encoded by this locus are evolving neutrally or are experiencing balancing, directional, or purifying selection. RESULTS: Nearly all of the variation in the fester locus resides within populations. The 13 housekeeping genes (12 nuclear genes and mitochondrial cytochrome oxidase I) have substantially more structure among populations within groups and among groups than fester. All polymorphism statistics (Tajima's D, Fu and Li's D* and F*) are significantly negative for the East Coast A-type alleles, and Fu and Li's F* statistic is significantly negative for the West Coast A-type alleles. These results are likely due to selection rather than demography, given that 10 of the housekeeping loci have no populations with significant values for any of the polymorphism statistics. The majority of codons in the fester proteins have ω values < 1, but 15–27 codons have > 95% posterior probability of ω values > 1. CONCLUSION: Fester proteins are evolving non-neutrally. The polymorphism statistics are consistent with either purifying selection or directional selection. The ω statistics show that the majority of the protein is experiencing purifying selection (ω < 1), but that 15–27 codons are undergoing either balancing or directional selection: ω > 1 is compatible with either scenario. The distribution of variation within and among populations points towards balancing selection and away from directional selection. While these data do not provide unambiguous support for a specific type of selection, they contribute to our evolutionary understanding of a critical biological process by determining the forces that affect loci involved in allorecognition. BioMed Central 2012-12-22 /pmc/articles/PMC3549757/ /pubmed/23259925 http://dx.doi.org/10.1186/1471-2148-12-249 Text en Copyright ©2012 Nydam and De Tomaso; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Nydam, Marie L De Tomaso, Anthony W The fester locus in Botryllus schlosseri experiences selection |
title | The fester locus in Botryllus schlosseri experiences selection |
title_full | The fester locus in Botryllus schlosseri experiences selection |
title_fullStr | The fester locus in Botryllus schlosseri experiences selection |
title_full_unstemmed | The fester locus in Botryllus schlosseri experiences selection |
title_short | The fester locus in Botryllus schlosseri experiences selection |
title_sort | fester locus in botryllus schlosseri experiences selection |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3549757/ https://www.ncbi.nlm.nih.gov/pubmed/23259925 http://dx.doi.org/10.1186/1471-2148-12-249 |
work_keys_str_mv | AT nydammariel thefesterlocusinbotryllusschlosseriexperiencesselection AT detomasoanthonyw thefesterlocusinbotryllusschlosseriexperiencesselection AT nydammariel festerlocusinbotryllusschlosseriexperiencesselection AT detomasoanthonyw festerlocusinbotryllusschlosseriexperiencesselection |