Cargando…
Predicting the difficulty of pure, strict, epistatic models: metrics for simulated model selection
BACKGROUND: Algorithms designed to detect complex genetic disease associations are initially evaluated using simulated datasets. Typical evaluations vary constraints that influence the correct detection of underlying models (i.e. number of loci, heritability, and minor allele frequency). Such studie...
Autores principales: | Urbanowicz, Ryan J, Kiralis, Jeff, Fisher, Jonathan M, Moore, Jason H |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3549792/ https://www.ncbi.nlm.nih.gov/pubmed/23014095 http://dx.doi.org/10.1186/1756-0381-5-15 |
Ejemplares similares
-
GAMETES: a fast, direct algorithm for generating pure, strict, epistatic models with random architectures
por: Urbanowicz, Ryan J, et al.
Publicado: (2012) -
A classification and characterization of two-locus, pure, strict, epistatic models for simulation and detection
por: Urbanowicz, Ryan J, et al.
Publicado: (2014) -
Mining Pure, Strict Epistatic Interactions from High-Dimensional Datasets: Ameliorating the Curse of Dimensionality
por: Jiang, Xia, et al.
Publicado: (2012) -
Spatially Uniform ReliefF (SURF) for computationally-efficient filtering of gene-gene interactions
por: Greene, Casey S, et al.
Publicado: (2009) -
An information-gain approach to detecting three-way epistatic interactions in genetic association studies
por: Hu, Ting, et al.
Publicado: (2013)