Cargando…
Scoring relevancy of features based on combinatorial analysis of Lasso with application to lymphoma diagnosis
One challenge in applying bioinformatic tools to clinical or biological data is high number of features that might be provided to the learning algorithm without any prior knowledge on which ones should be used. In such applications, the number of features can drastically exceed the number of trainin...
Autores principales: | Zare, Habil, Haffari, Gholamreza, Gupta, Arvind, Brinkman, Ryan R |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3549810/ https://www.ncbi.nlm.nih.gov/pubmed/23369194 http://dx.doi.org/10.1186/1471-2164-14-S1-S14 |
Ejemplares similares
-
Detecting disease-causing genes by LASSO-Patternsearch algorithm
por: Shi, Weiliang, et al.
Publicado: (2007) -
Data reduction for spectral clustering to analyze high throughput flow cytometry data
por: Zare, Habil, et al.
Publicado: (2010) -
Evaluation of logistic Bayesian LASSO for identifying association with rare haplotypes
por: Biswas, Swati, et al.
Publicado: (2014) -
Regularized group regression methods for genomic prediction: Bridge, MCP, SCAD, group bridge, group lasso, sparse group lasso, group MCP and group SCAD
por: Ogutu, Joseph O, et al.
Publicado: (2014) -
Using LASSO regression to detect predictive aggregate effects in genetic studies
por: Fontanarosa, Joel B, et al.
Publicado: (2011)