Cargando…

Specific combination of compound heterozygous mutations in 17β-hydroxysteroid dehydrogenase type 4 (HSD17B4) defines a new subtype of D-bifunctional protein deficiency

BACKGROUND: D-bifunctional protein (DBP) deficiency is typically apparent within the first month of life with most infants demonstrating hypotonia, psychomotor delay and seizures. Few children survive beyond two years of age. Among patients with prolonged survival all demonstrate severe gross motor...

Descripción completa

Detalles Bibliográficos
Autores principales: McMillan, Hugh J, Worthylake, Thea, Schwartzentruber, Jeremy, Gottlieb, Chloe C, Lawrence, Sarah E, MacKenzie, Alex, Beaulieu, Chandree L, Mooyer, Petra A W, Wanders, Ronald J A, Majewski, Jacek, Bulman, Dennis E, Geraghty, Michael T, Ferdinandusse, Sacha, Boycott, Kym M
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3551712/
https://www.ncbi.nlm.nih.gov/pubmed/23181892
http://dx.doi.org/10.1186/1750-1172-7-90
_version_ 1782256598178070528
author McMillan, Hugh J
Worthylake, Thea
Schwartzentruber, Jeremy
Gottlieb, Chloe C
Lawrence, Sarah E
MacKenzie, Alex
Beaulieu, Chandree L
Mooyer, Petra A W
Wanders, Ronald J A
Majewski, Jacek
Bulman, Dennis E
Geraghty, Michael T
Ferdinandusse, Sacha
Boycott, Kym M
author_facet McMillan, Hugh J
Worthylake, Thea
Schwartzentruber, Jeremy
Gottlieb, Chloe C
Lawrence, Sarah E
MacKenzie, Alex
Beaulieu, Chandree L
Mooyer, Petra A W
Wanders, Ronald J A
Majewski, Jacek
Bulman, Dennis E
Geraghty, Michael T
Ferdinandusse, Sacha
Boycott, Kym M
author_sort McMillan, Hugh J
collection PubMed
description BACKGROUND: D-bifunctional protein (DBP) deficiency is typically apparent within the first month of life with most infants demonstrating hypotonia, psychomotor delay and seizures. Few children survive beyond two years of age. Among patients with prolonged survival all demonstrate severe gross motor delay, absent language development, and severe hearing and visual impairment. DBP contains three catalytically active domains; an N-terminal dehydrogenase, a central hydratase and a C-terminal sterol carrier protein-2-like domain. Three subtypes of the disease are identified based upon the domain affected; DBP type I results from a combined deficiency of dehydrogenase and hydratase activity; DBP type II from isolated hydratase deficiency and DBP type III from isolated dehydrogenase deficiency. Here we report two brothers (16½ and 14 years old) with DBP deficiency characterized by normal early childhood followed by sensorineural hearing loss, progressive cerebellar and sensory ataxia and subclinical retinitis pigmentosa. METHODS AND RESULTS: Biochemical analysis revealed normal levels of plasma VLCFA, phytanic acid and pristanic acid, and normal bile acids in urine; based on these results no diagnosis was made. Exome analysis was performed using the Agilent SureSelect 50Mb All Exon Kit and the Illumina HiSeq 2000 next-generation-sequencing (NGS) platform. Compound heterozygous mutations were identified by exome sequencing and confirmed by Sanger sequencing within the dehydrogenase domain (c.101C>T; p.Ala34Val) and hydratase domain (c.1547T>C; p.Ile516Thr) of the 17β-hydroxysteroid dehydrogenase type 4 gene (HSD17B4). These mutations have been previously reported in patients with severe-forms of DBP deficiency, however each mutation was reported in combination with another mutation affecting the same domain. Subsequent studies in fibroblasts revealed normal VLCFA levels, normal C26:0 but reduced pristanic acid beta-oxidation activity. Both DBP hydratase and dehydrogenase activity were markedly decreased but detectable. CONCLUSIONS: We propose that the DBP phenotype seen in this family represents a distinct and novel subtype of DBP deficiency, which we have termed type IV based on the presence of a missense mutation in each of the domains of DBP resulting in markedly reduced but detectable hydratase and dehydrogenase activity of DBP. Given that the biochemical testing in plasma was normal in these patients, this is likely an underdiagnosed form of DBP deficiency.
format Online
Article
Text
id pubmed-3551712
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-35517122013-01-24 Specific combination of compound heterozygous mutations in 17β-hydroxysteroid dehydrogenase type 4 (HSD17B4) defines a new subtype of D-bifunctional protein deficiency McMillan, Hugh J Worthylake, Thea Schwartzentruber, Jeremy Gottlieb, Chloe C Lawrence, Sarah E MacKenzie, Alex Beaulieu, Chandree L Mooyer, Petra A W Wanders, Ronald J A Majewski, Jacek Bulman, Dennis E Geraghty, Michael T Ferdinandusse, Sacha Boycott, Kym M Orphanet J Rare Dis Research BACKGROUND: D-bifunctional protein (DBP) deficiency is typically apparent within the first month of life with most infants demonstrating hypotonia, psychomotor delay and seizures. Few children survive beyond two years of age. Among patients with prolonged survival all demonstrate severe gross motor delay, absent language development, and severe hearing and visual impairment. DBP contains three catalytically active domains; an N-terminal dehydrogenase, a central hydratase and a C-terminal sterol carrier protein-2-like domain. Three subtypes of the disease are identified based upon the domain affected; DBP type I results from a combined deficiency of dehydrogenase and hydratase activity; DBP type II from isolated hydratase deficiency and DBP type III from isolated dehydrogenase deficiency. Here we report two brothers (16½ and 14 years old) with DBP deficiency characterized by normal early childhood followed by sensorineural hearing loss, progressive cerebellar and sensory ataxia and subclinical retinitis pigmentosa. METHODS AND RESULTS: Biochemical analysis revealed normal levels of plasma VLCFA, phytanic acid and pristanic acid, and normal bile acids in urine; based on these results no diagnosis was made. Exome analysis was performed using the Agilent SureSelect 50Mb All Exon Kit and the Illumina HiSeq 2000 next-generation-sequencing (NGS) platform. Compound heterozygous mutations were identified by exome sequencing and confirmed by Sanger sequencing within the dehydrogenase domain (c.101C>T; p.Ala34Val) and hydratase domain (c.1547T>C; p.Ile516Thr) of the 17β-hydroxysteroid dehydrogenase type 4 gene (HSD17B4). These mutations have been previously reported in patients with severe-forms of DBP deficiency, however each mutation was reported in combination with another mutation affecting the same domain. Subsequent studies in fibroblasts revealed normal VLCFA levels, normal C26:0 but reduced pristanic acid beta-oxidation activity. Both DBP hydratase and dehydrogenase activity were markedly decreased but detectable. CONCLUSIONS: We propose that the DBP phenotype seen in this family represents a distinct and novel subtype of DBP deficiency, which we have termed type IV based on the presence of a missense mutation in each of the domains of DBP resulting in markedly reduced but detectable hydratase and dehydrogenase activity of DBP. Given that the biochemical testing in plasma was normal in these patients, this is likely an underdiagnosed form of DBP deficiency. BioMed Central 2012-11-22 /pmc/articles/PMC3551712/ /pubmed/23181892 http://dx.doi.org/10.1186/1750-1172-7-90 Text en Copyright ©2012 McMillan et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research
McMillan, Hugh J
Worthylake, Thea
Schwartzentruber, Jeremy
Gottlieb, Chloe C
Lawrence, Sarah E
MacKenzie, Alex
Beaulieu, Chandree L
Mooyer, Petra A W
Wanders, Ronald J A
Majewski, Jacek
Bulman, Dennis E
Geraghty, Michael T
Ferdinandusse, Sacha
Boycott, Kym M
Specific combination of compound heterozygous mutations in 17β-hydroxysteroid dehydrogenase type 4 (HSD17B4) defines a new subtype of D-bifunctional protein deficiency
title Specific combination of compound heterozygous mutations in 17β-hydroxysteroid dehydrogenase type 4 (HSD17B4) defines a new subtype of D-bifunctional protein deficiency
title_full Specific combination of compound heterozygous mutations in 17β-hydroxysteroid dehydrogenase type 4 (HSD17B4) defines a new subtype of D-bifunctional protein deficiency
title_fullStr Specific combination of compound heterozygous mutations in 17β-hydroxysteroid dehydrogenase type 4 (HSD17B4) defines a new subtype of D-bifunctional protein deficiency
title_full_unstemmed Specific combination of compound heterozygous mutations in 17β-hydroxysteroid dehydrogenase type 4 (HSD17B4) defines a new subtype of D-bifunctional protein deficiency
title_short Specific combination of compound heterozygous mutations in 17β-hydroxysteroid dehydrogenase type 4 (HSD17B4) defines a new subtype of D-bifunctional protein deficiency
title_sort specific combination of compound heterozygous mutations in 17β-hydroxysteroid dehydrogenase type 4 (hsd17b4) defines a new subtype of d-bifunctional protein deficiency
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3551712/
https://www.ncbi.nlm.nih.gov/pubmed/23181892
http://dx.doi.org/10.1186/1750-1172-7-90
work_keys_str_mv AT mcmillanhughj specificcombinationofcompoundheterozygousmutationsin17bhydroxysteroiddehydrogenasetype4hsd17b4definesanewsubtypeofdbifunctionalproteindeficiency
AT worthylakethea specificcombinationofcompoundheterozygousmutationsin17bhydroxysteroiddehydrogenasetype4hsd17b4definesanewsubtypeofdbifunctionalproteindeficiency
AT schwartzentruberjeremy specificcombinationofcompoundheterozygousmutationsin17bhydroxysteroiddehydrogenasetype4hsd17b4definesanewsubtypeofdbifunctionalproteindeficiency
AT gottliebchloec specificcombinationofcompoundheterozygousmutationsin17bhydroxysteroiddehydrogenasetype4hsd17b4definesanewsubtypeofdbifunctionalproteindeficiency
AT lawrencesarahe specificcombinationofcompoundheterozygousmutationsin17bhydroxysteroiddehydrogenasetype4hsd17b4definesanewsubtypeofdbifunctionalproteindeficiency
AT mackenziealex specificcombinationofcompoundheterozygousmutationsin17bhydroxysteroiddehydrogenasetype4hsd17b4definesanewsubtypeofdbifunctionalproteindeficiency
AT beaulieuchandreel specificcombinationofcompoundheterozygousmutationsin17bhydroxysteroiddehydrogenasetype4hsd17b4definesanewsubtypeofdbifunctionalproteindeficiency
AT mooyerpetraaw specificcombinationofcompoundheterozygousmutationsin17bhydroxysteroiddehydrogenasetype4hsd17b4definesanewsubtypeofdbifunctionalproteindeficiency
AT wandersronaldja specificcombinationofcompoundheterozygousmutationsin17bhydroxysteroiddehydrogenasetype4hsd17b4definesanewsubtypeofdbifunctionalproteindeficiency
AT majewskijacek specificcombinationofcompoundheterozygousmutationsin17bhydroxysteroiddehydrogenasetype4hsd17b4definesanewsubtypeofdbifunctionalproteindeficiency
AT bulmandennise specificcombinationofcompoundheterozygousmutationsin17bhydroxysteroiddehydrogenasetype4hsd17b4definesanewsubtypeofdbifunctionalproteindeficiency
AT geraghtymichaelt specificcombinationofcompoundheterozygousmutationsin17bhydroxysteroiddehydrogenasetype4hsd17b4definesanewsubtypeofdbifunctionalproteindeficiency
AT ferdinandussesacha specificcombinationofcompoundheterozygousmutationsin17bhydroxysteroiddehydrogenasetype4hsd17b4definesanewsubtypeofdbifunctionalproteindeficiency
AT boycottkymm specificcombinationofcompoundheterozygousmutationsin17bhydroxysteroiddehydrogenasetype4hsd17b4definesanewsubtypeofdbifunctionalproteindeficiency