Cargando…

Several steps/day indicators predict changes in anthropometric outcomes: HUB City Steps

BACKGROUND: Walking for exercise remains the most frequently reported leisure-time activity, likely because it is simple, inexpensive, and easily incorporated into most people’s lifestyle. Pedometers are simple, convenient, and economical tools that can be used to quantify step-determined physical a...

Descripción completa

Detalles Bibliográficos
Autores principales: Thomson, Jessica L, Landry, Alicia S, Zoellner, Jamie M, Tudor-Locke, Catrine, Webster, Michael, Connell, Carol, Yadrick, Kathy
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3551779/
https://www.ncbi.nlm.nih.gov/pubmed/23153060
http://dx.doi.org/10.1186/1471-2458-12-983
Descripción
Sumario:BACKGROUND: Walking for exercise remains the most frequently reported leisure-time activity, likely because it is simple, inexpensive, and easily incorporated into most people’s lifestyle. Pedometers are simple, convenient, and economical tools that can be used to quantify step-determined physical activity. Few studies have attempted to define the direct relationship between dynamic changes in pedometer-determined steps/day and changes in anthropometric and clinical outcomes. Hence, the objective of this secondary analysis was to evaluate the utility of several descriptive indicators of pedometer-determined steps/day for predicting changes in anthropometric and clinical outcomes using data from a community-based walking intervention, HUB City Steps, conducted in a southern, African American population. A secondary aim was to evaluate whether treating steps/day data for implausible values affected the ability of these data to predict intervention-induced changes in clinical and anthropometric outcomes. METHODS: The data used in this secondary analysis were collected in 2010 from 269 participants in a six-month walking intervention targeting a reduction in blood pressure. Throughout the intervention, participants submitted weekly steps/day diaries based on pedometer self-monitoring. Changes (six-month minus baseline) in anthropometric (body mass index, waist circumference, percent body fat [%BF], fat mass) and clinical (blood pressure, lipids, glucose) outcomes were evaluated. Associations between steps/day indicators and changes in anthropometric and clinical outcomes were assessed using bivariate tests and multivariable linear regression analysis which controlled for demographic and baseline covariates. RESULTS: Significant negative bivariate associations were observed between steps/day indicators and the majority of anthropometric and clinical outcome changes (r = -0.3 to -0.2: P < 0.05). After controlling for covariates in the regression analysis, only the relationships between steps/day indicators and changes in anthropometric (not clinical) outcomes remained significant. For example, a 1,000 steps/day increase in intervention mean steps/day resulted in a 0.1% decrease in %BF. Results for the three pedometer datasets (full, truncated, and excluded) were similar and yielded few meaningful differences in interpretation of the findings. CONCLUSIONS: Several descriptive indicators of steps/day may be useful for predicting anthropometric outcome changes. Further, manipulating steps/day data to address implausible values has little overall effect on the ability to predict these anthropometric changes.