Cargando…
Predicting live birth chances for women with multiple consecutive failing IVF cycles: a simple and accurate prediction for routine medical practice
BACKGROUND: Women having experienced several consecutive failing IVF cycles constitute a critical and particular subset of patients, for which growing perception of irremediable failure, increasing costs and IVF treatment related risks necessitate appropriate decision making when starting or not a n...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3551786/ https://www.ncbi.nlm.nih.gov/pubmed/23302328 http://dx.doi.org/10.1186/1477-7827-11-1 |
Sumario: | BACKGROUND: Women having experienced several consecutive failing IVF cycles constitute a critical and particular subset of patients, for which growing perception of irremediable failure, increasing costs and IVF treatment related risks necessitate appropriate decision making when starting or not a new cycle. Predicting chances of LB might constitute a useful tool for discussion between the patient and the clinician. Our essential objective was to dispose of a simple and accurate prediction model for use in routine medical practice. The currently available predictive models applicable to general populations cannot be considered as accurate enough for this purpose. METHODS: Patients with at least four consecutive Failing cycles (CFCs) were selected. We constructed a predictive model of LB occurrence during the last cycle, by using a stepwise logistic regression, using all the baseline patient characteristics and intermediate stage variables during the four first cycles. RESULTS: On as set of 151 patients, we identified five determinant predictors: the number of previous cycles with at least one gestational sac (NGS), the mean number of good-quality embryos, age, male infertility (MI) aetiology and basal FSH. Our model was characterized by a much higher discrimination as the existing models (C-statistics=0.76), and an excellent calibration. CONCLUSIONS: Couples having experienced multiple IVF failures need precise and appropriate information to decide to resume or interrupt their fertility project. Our essential objective was to dispose of a simple and accurate prediction model to allow a routine practice use. Our model is adapted to this purpose: It is very simple, combines five easily collected variables in a short calculation; it is more accurate than existing models, with a fair discrimination and a well calibrated prediction. |
---|