Cargando…

Molecular recognition using receptor-free nanomechanical infrared spectroscopy based on a quantum cascade laser

Speciation of complex mixtures of trace explosives presents a formidable challenge for sensors that rely on chemoselective interfaces due to the unspecific nature of weak intermolecular interactions. Nanomechanical infrared (IR) spectroscopy provides higher selectivity in molecular detection without...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Seonghwan, Lee, Dongkyu, Liu, Xunchen, Van Neste, Charles, Jeon, Sangmin, Thundat, Thomas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3552270/
https://www.ncbi.nlm.nih.gov/pubmed/23346368
http://dx.doi.org/10.1038/srep01111
_version_ 1782256659695927296
author Kim, Seonghwan
Lee, Dongkyu
Liu, Xunchen
Van Neste, Charles
Jeon, Sangmin
Thundat, Thomas
author_facet Kim, Seonghwan
Lee, Dongkyu
Liu, Xunchen
Van Neste, Charles
Jeon, Sangmin
Thundat, Thomas
author_sort Kim, Seonghwan
collection PubMed
description Speciation of complex mixtures of trace explosives presents a formidable challenge for sensors that rely on chemoselective interfaces due to the unspecific nature of weak intermolecular interactions. Nanomechanical infrared (IR) spectroscopy provides higher selectivity in molecular detection without using chemoselective interfaces by measuring the photothermal effect of adsorbed molecules on a thermally sensitive microcantilever. In addition, unlike conventional IR spectroscopy, the detection sensitivity is drastically enhanced by increasing the IR laser power, since the photothermal signal comes from the absorption of IR photons and nonradiative decay processes. By using a broadly tunable quantum cascade laser for the resonant excitation of molecules, we increased the detection sensitivity by one order of magnitude compared to the use of a conventional IR monochromator. Here, we demonstrate the successful speciation and quantification of picogram levels of ternary mixtures of similar explosives (trinitrotoluene (TNT), cyclotrimethylene trinitramine (RDX), and pentaerythritol tetranitrate (PETN)) using nanomechanical IR spectroscopy.
format Online
Article
Text
id pubmed-3552270
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-35522702013-01-23 Molecular recognition using receptor-free nanomechanical infrared spectroscopy based on a quantum cascade laser Kim, Seonghwan Lee, Dongkyu Liu, Xunchen Van Neste, Charles Jeon, Sangmin Thundat, Thomas Sci Rep Article Speciation of complex mixtures of trace explosives presents a formidable challenge for sensors that rely on chemoselective interfaces due to the unspecific nature of weak intermolecular interactions. Nanomechanical infrared (IR) spectroscopy provides higher selectivity in molecular detection without using chemoselective interfaces by measuring the photothermal effect of adsorbed molecules on a thermally sensitive microcantilever. In addition, unlike conventional IR spectroscopy, the detection sensitivity is drastically enhanced by increasing the IR laser power, since the photothermal signal comes from the absorption of IR photons and nonradiative decay processes. By using a broadly tunable quantum cascade laser for the resonant excitation of molecules, we increased the detection sensitivity by one order of magnitude compared to the use of a conventional IR monochromator. Here, we demonstrate the successful speciation and quantification of picogram levels of ternary mixtures of similar explosives (trinitrotoluene (TNT), cyclotrimethylene trinitramine (RDX), and pentaerythritol tetranitrate (PETN)) using nanomechanical IR spectroscopy. Nature Publishing Group 2013-01-23 /pmc/articles/PMC3552270/ /pubmed/23346368 http://dx.doi.org/10.1038/srep01111 Text en Copyright © 2013, Macmillan Publishers Limited. All rights reserved http://creativecommons.org/licenses/by-nc-nd/3.0/ This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/
spellingShingle Article
Kim, Seonghwan
Lee, Dongkyu
Liu, Xunchen
Van Neste, Charles
Jeon, Sangmin
Thundat, Thomas
Molecular recognition using receptor-free nanomechanical infrared spectroscopy based on a quantum cascade laser
title Molecular recognition using receptor-free nanomechanical infrared spectroscopy based on a quantum cascade laser
title_full Molecular recognition using receptor-free nanomechanical infrared spectroscopy based on a quantum cascade laser
title_fullStr Molecular recognition using receptor-free nanomechanical infrared spectroscopy based on a quantum cascade laser
title_full_unstemmed Molecular recognition using receptor-free nanomechanical infrared spectroscopy based on a quantum cascade laser
title_short Molecular recognition using receptor-free nanomechanical infrared spectroscopy based on a quantum cascade laser
title_sort molecular recognition using receptor-free nanomechanical infrared spectroscopy based on a quantum cascade laser
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3552270/
https://www.ncbi.nlm.nih.gov/pubmed/23346368
http://dx.doi.org/10.1038/srep01111
work_keys_str_mv AT kimseonghwan molecularrecognitionusingreceptorfreenanomechanicalinfraredspectroscopybasedonaquantumcascadelaser
AT leedongkyu molecularrecognitionusingreceptorfreenanomechanicalinfraredspectroscopybasedonaquantumcascadelaser
AT liuxunchen molecularrecognitionusingreceptorfreenanomechanicalinfraredspectroscopybasedonaquantumcascadelaser
AT vannestecharles molecularrecognitionusingreceptorfreenanomechanicalinfraredspectroscopybasedonaquantumcascadelaser
AT jeonsangmin molecularrecognitionusingreceptorfreenanomechanicalinfraredspectroscopybasedonaquantumcascadelaser
AT thundatthomas molecularrecognitionusingreceptorfreenanomechanicalinfraredspectroscopybasedonaquantumcascadelaser