Cargando…
TSG: a new algorithm for binary and multi-class cancer classification and informative genes selection
BACKGROUND: One of the challenges in classification of cancer tissue samples based on gene expression data is to establish an effective method that can select a parsimonious set of informative genes. The Top Scoring Pair (TSP), k-Top Scoring Pairs (k-TSP), Support Vector Machines (SVM), and predicti...
Autores principales: | Wang, Haiyan, Zhang, Hongyan, Dai, Zhijun, Chen, Ming-shun, Yuan, Zheming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3552704/ https://www.ncbi.nlm.nih.gov/pubmed/23445528 http://dx.doi.org/10.1186/1755-8794-6-S1-S3 |
Ejemplares similares
-
Improving accuracy for cancer classification with a new algorithm for genes selection
por: Zhang, Hongyan, et al.
Publicado: (2012) -
Binary Matrix Shuffling Filter for Feature Selection in Neuronal Morphology Classification
por: Sun, Congwei, et al.
Publicado: (2015) -
Multi-task feature selection in microarray data by binary integer programming
por: Lan, Liang, et al.
Publicado: (2013) -
Classification and feature selection algorithms for multi-class CGH data
por: Liu, Jun, et al.
Publicado: (2008) -
A binary matrix factorization algorithm for protein complex prediction
por: Tu, Shikui, et al.
Publicado: (2011)