Cargando…
Nanoscale optical and electrical characterization of horizontally aligned single-walled carbon nanotubes
During the recent years, a significant amount of research has been performed on single-walled carbon nanotubes (SWCNTs) as a channel material in thin-film transistors (Pham et al. IEEE Trans Nanotechnol 11:44–50, 2012). This has prompted the application of advanced characterization techniques based...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3552840/ https://www.ncbi.nlm.nih.gov/pubmed/23259903 http://dx.doi.org/10.1186/1556-276X-7-682 |
_version_ | 1782256734005362688 |
---|---|
author | Rodriguez, Raul D Toader, Marius Hermann, Sascha Sheremet, Evgeniya Müller, Susanne Gordan, Ovidiu D Yu, Haibo Schulz, Stefan E Hietschold, Michael Zahn, Dietrich RT |
author_facet | Rodriguez, Raul D Toader, Marius Hermann, Sascha Sheremet, Evgeniya Müller, Susanne Gordan, Ovidiu D Yu, Haibo Schulz, Stefan E Hietschold, Michael Zahn, Dietrich RT |
author_sort | Rodriguez, Raul D |
collection | PubMed |
description | During the recent years, a significant amount of research has been performed on single-walled carbon nanotubes (SWCNTs) as a channel material in thin-film transistors (Pham et al. IEEE Trans Nanotechnol 11:44–50, 2012). This has prompted the application of advanced characterization techniques based on combined atomic force microscopy (AFM) and Raman spectroscopy studies (Mureau et al. Electrophoresis 29:2266–2271, 2008). In this context, we use confocal Raman microscopy and current sensing atomic force microscopy (CS-AFM) to study phonons and the electronic transport in semiconducting SWCNTs, which were aligned between palladium electrodes using dielectrophoresis (Kuzyk Electrophoresis 32:2307–2313, 2011). Raman imaging was performed in the region around the electrodes on the suspended CNTs using several laser excitation wavelengths. Analysis of the G(+)/G(−) splitting in the Raman spectra (Sgobba and Guldi Chem Soc Rev 38:165–184, 2009) shows CNT diameters of 2.5 ± 0.3 nm. Neither surface modification nor increase in defect density or stress at the CNT-electrode contact could be detected, but rather a shift in G(+) and G(−) peak positions in regions with high CNT density between the electrodes. Simultaneous topographical and electrical characterization of the CNT transistor by CS-AFM confirms the presence of CNT bundles having a stable electrical contact with the transistor electrodes. For a similar load force, reproducible current–voltage (I/V) curves for the same CNT regions verify the stability of the electrical contact between the nanotube and the electrodes as well as the nanotube and the AFM tip over different experimental sessions using different AFM tips. Strong variations observed in the I/V response at different regions of the CNT transistor are discussed. |
format | Online Article Text |
id | pubmed-3552840 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Springer |
record_format | MEDLINE/PubMed |
spelling | pubmed-35528402013-01-28 Nanoscale optical and electrical characterization of horizontally aligned single-walled carbon nanotubes Rodriguez, Raul D Toader, Marius Hermann, Sascha Sheremet, Evgeniya Müller, Susanne Gordan, Ovidiu D Yu, Haibo Schulz, Stefan E Hietschold, Michael Zahn, Dietrich RT Nanoscale Res Lett Nano Express During the recent years, a significant amount of research has been performed on single-walled carbon nanotubes (SWCNTs) as a channel material in thin-film transistors (Pham et al. IEEE Trans Nanotechnol 11:44–50, 2012). This has prompted the application of advanced characterization techniques based on combined atomic force microscopy (AFM) and Raman spectroscopy studies (Mureau et al. Electrophoresis 29:2266–2271, 2008). In this context, we use confocal Raman microscopy and current sensing atomic force microscopy (CS-AFM) to study phonons and the electronic transport in semiconducting SWCNTs, which were aligned between palladium electrodes using dielectrophoresis (Kuzyk Electrophoresis 32:2307–2313, 2011). Raman imaging was performed in the region around the electrodes on the suspended CNTs using several laser excitation wavelengths. Analysis of the G(+)/G(−) splitting in the Raman spectra (Sgobba and Guldi Chem Soc Rev 38:165–184, 2009) shows CNT diameters of 2.5 ± 0.3 nm. Neither surface modification nor increase in defect density or stress at the CNT-electrode contact could be detected, but rather a shift in G(+) and G(−) peak positions in regions with high CNT density between the electrodes. Simultaneous topographical and electrical characterization of the CNT transistor by CS-AFM confirms the presence of CNT bundles having a stable electrical contact with the transistor electrodes. For a similar load force, reproducible current–voltage (I/V) curves for the same CNT regions verify the stability of the electrical contact between the nanotube and the electrodes as well as the nanotube and the AFM tip over different experimental sessions using different AFM tips. Strong variations observed in the I/V response at different regions of the CNT transistor are discussed. Springer 2012-12-21 /pmc/articles/PMC3552840/ /pubmed/23259903 http://dx.doi.org/10.1186/1556-276X-7-682 Text en Copyright ©2012 Rodriguez et al.; licensee Springer. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Nano Express Rodriguez, Raul D Toader, Marius Hermann, Sascha Sheremet, Evgeniya Müller, Susanne Gordan, Ovidiu D Yu, Haibo Schulz, Stefan E Hietschold, Michael Zahn, Dietrich RT Nanoscale optical and electrical characterization of horizontally aligned single-walled carbon nanotubes |
title | Nanoscale optical and electrical characterization of horizontally aligned single-walled carbon nanotubes |
title_full | Nanoscale optical and electrical characterization of horizontally aligned single-walled carbon nanotubes |
title_fullStr | Nanoscale optical and electrical characterization of horizontally aligned single-walled carbon nanotubes |
title_full_unstemmed | Nanoscale optical and electrical characterization of horizontally aligned single-walled carbon nanotubes |
title_short | Nanoscale optical and electrical characterization of horizontally aligned single-walled carbon nanotubes |
title_sort | nanoscale optical and electrical characterization of horizontally aligned single-walled carbon nanotubes |
topic | Nano Express |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3552840/ https://www.ncbi.nlm.nih.gov/pubmed/23259903 http://dx.doi.org/10.1186/1556-276X-7-682 |
work_keys_str_mv | AT rodriguezrauld nanoscaleopticalandelectricalcharacterizationofhorizontallyalignedsinglewalledcarbonnanotubes AT toadermarius nanoscaleopticalandelectricalcharacterizationofhorizontallyalignedsinglewalledcarbonnanotubes AT hermannsascha nanoscaleopticalandelectricalcharacterizationofhorizontallyalignedsinglewalledcarbonnanotubes AT sheremetevgeniya nanoscaleopticalandelectricalcharacterizationofhorizontallyalignedsinglewalledcarbonnanotubes AT mullersusanne nanoscaleopticalandelectricalcharacterizationofhorizontallyalignedsinglewalledcarbonnanotubes AT gordanovidiud nanoscaleopticalandelectricalcharacterizationofhorizontallyalignedsinglewalledcarbonnanotubes AT yuhaibo nanoscaleopticalandelectricalcharacterizationofhorizontallyalignedsinglewalledcarbonnanotubes AT schulzstefane nanoscaleopticalandelectricalcharacterizationofhorizontallyalignedsinglewalledcarbonnanotubes AT hietscholdmichael nanoscaleopticalandelectricalcharacterizationofhorizontallyalignedsinglewalledcarbonnanotubes AT zahndietrichrt nanoscaleopticalandelectricalcharacterizationofhorizontallyalignedsinglewalledcarbonnanotubes |