Cargando…

The roots of Atractylodes japonica Koidzumi promote adipogenic differentiation via activation of the insulin signaling pathway in 3T3-L1 cells

BACKGROUND: Type 2 diabetes (T2D) is a complex metabolic disorder characterized by insulin resistance and hyperglycemia. Peroxisome proliferator-activated receptor gamma (PPARγ) is a key transcription factor and plays an important role in the regulation of genes involved in adipogenic differentiatio...

Descripción completa

Detalles Bibliográficos
Autores principales: Han, Yunkyung, Jung, Hyo Won, Park, Yong-Ki
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3552989/
https://www.ncbi.nlm.nih.gov/pubmed/22978376
http://dx.doi.org/10.1186/1472-6882-12-154
Descripción
Sumario:BACKGROUND: Type 2 diabetes (T2D) is a complex metabolic disorder characterized by insulin resistance and hyperglycemia. Peroxisome proliferator-activated receptor gamma (PPARγ) is a key transcription factor and plays an important role in the regulation of genes involved in adipogenic differentiation, glucose metabolism and insulin signal transduction. METHODS: In this study, the effects of the root extract of Atractylodes japonica Koidzumi (Atractylodis Rhizoma Alba, ARA) on the differentiation of 3T3-L1 preadipocytes and the possible mechanism of glucose transport were investigated. 3T3-L1 cells were cultured with insulin and ARA extract. RESULTS: In 3T3-L1 cells, ARA extract significantly enhanced adipogenic differentiation and upregulated the expression of PPARγ genes and protein in a dose-dependent manner. ARA also promoted glucose transport by increasing the glucose transporter 4 (GLUT-4), phosphatidylinositol 3-kinase (PI3K) and insulin receptor substrates-1 (IRS-1) levels. CONCLUSION: Our results suggest that ARA extract may be an attractive therapeutic agent for managing T2D via promoting the differentiation of adipocytes with the upregulation of PPARγ levels and the activation of the insulin signaling pathway.