Cargando…
Overexpression of Wild-Type but Not C134W Mutant FOXL2 Enhances GnRH-Induced Cell Apoptosis by Increasing GnRH Receptor Expression in Human Granulosa Cell Tumors
The etiology of granulosa cell tumors (GCTs) is largely unknown. The primary mode of treatment is surgical, however not all women are cured by surgery alone. Thus, it is important to develop improved treatments through a greater understanding of the molecular mechanisms that contribute to this disea...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3553060/ https://www.ncbi.nlm.nih.gov/pubmed/23372819 http://dx.doi.org/10.1371/journal.pone.0055099 |
_version_ | 1782256775693598720 |
---|---|
author | Cheng, Jung-Chien Klausen, Christian Leung, Peter C. K. |
author_facet | Cheng, Jung-Chien Klausen, Christian Leung, Peter C. K. |
author_sort | Cheng, Jung-Chien |
collection | PubMed |
description | The etiology of granulosa cell tumors (GCTs) is largely unknown. The primary mode of treatment is surgical, however not all women are cured by surgery alone. Thus, it is important to develop improved treatments through a greater understanding of the molecular mechanisms that contribute to this disease. Recently, it has been shown that a FOXL2 402C>G (C134W) mutation is present in 97% of human adult-type GCTs, suggesting an important role for this mutation in the development of GCTs. We have shown previously that gonadotropin-releasing hormone (GnRH)-I and -II induce apoptosis in cultured normal human granulosa cells. Moreover, it has been reported that FOXL2 can bind to the promoter of the mouse GnRH receptor gene and regulate its transcription. Thus, we hypothesized that C134W mutant FOXL2 could modulate the pro-apoptotic effects of GnRH via aberrant regulation of GnRH receptor levels. Using KGN cells, a human GCT-derived cell line which harbors the FOXL2 402C>G mutation, we show that treatment with GnRH-I and -II induces cell apoptosis, and that small interfering RNA-mediated depletion of GnRH receptor abolishes these effects. Overexpression of wild-type FOXL2 increases both mRNA and protein levels of GnRH receptor and consequently enhances GnRH-induced apoptosis. Importantly, neither the expression levels of GnRH receptor nor GnRH-induced apoptosis were affected by overexpression of the C134W mutant FOXL2. Interestingly, knockdown of endogenous FOXL2 down-regulates GnRHR expression in normal human granulosa cells with wild-type FOXL2, but not in KGN cells. These results suggest that the FOXL2 402C>G mutation may contribute to the development of human adult-type GCTs by reducing the expression of GnRH receptor, thus conferring resistance to GnRH-induced cell apoptosis. |
format | Online Article Text |
id | pubmed-3553060 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-35530602013-01-31 Overexpression of Wild-Type but Not C134W Mutant FOXL2 Enhances GnRH-Induced Cell Apoptosis by Increasing GnRH Receptor Expression in Human Granulosa Cell Tumors Cheng, Jung-Chien Klausen, Christian Leung, Peter C. K. PLoS One Research Article The etiology of granulosa cell tumors (GCTs) is largely unknown. The primary mode of treatment is surgical, however not all women are cured by surgery alone. Thus, it is important to develop improved treatments through a greater understanding of the molecular mechanisms that contribute to this disease. Recently, it has been shown that a FOXL2 402C>G (C134W) mutation is present in 97% of human adult-type GCTs, suggesting an important role for this mutation in the development of GCTs. We have shown previously that gonadotropin-releasing hormone (GnRH)-I and -II induce apoptosis in cultured normal human granulosa cells. Moreover, it has been reported that FOXL2 can bind to the promoter of the mouse GnRH receptor gene and regulate its transcription. Thus, we hypothesized that C134W mutant FOXL2 could modulate the pro-apoptotic effects of GnRH via aberrant regulation of GnRH receptor levels. Using KGN cells, a human GCT-derived cell line which harbors the FOXL2 402C>G mutation, we show that treatment with GnRH-I and -II induces cell apoptosis, and that small interfering RNA-mediated depletion of GnRH receptor abolishes these effects. Overexpression of wild-type FOXL2 increases both mRNA and protein levels of GnRH receptor and consequently enhances GnRH-induced apoptosis. Importantly, neither the expression levels of GnRH receptor nor GnRH-induced apoptosis were affected by overexpression of the C134W mutant FOXL2. Interestingly, knockdown of endogenous FOXL2 down-regulates GnRHR expression in normal human granulosa cells with wild-type FOXL2, but not in KGN cells. These results suggest that the FOXL2 402C>G mutation may contribute to the development of human adult-type GCTs by reducing the expression of GnRH receptor, thus conferring resistance to GnRH-induced cell apoptosis. Public Library of Science 2013-01-23 /pmc/articles/PMC3553060/ /pubmed/23372819 http://dx.doi.org/10.1371/journal.pone.0055099 Text en © 2013 Cheng et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Cheng, Jung-Chien Klausen, Christian Leung, Peter C. K. Overexpression of Wild-Type but Not C134W Mutant FOXL2 Enhances GnRH-Induced Cell Apoptosis by Increasing GnRH Receptor Expression in Human Granulosa Cell Tumors |
title | Overexpression of Wild-Type but Not C134W Mutant FOXL2 Enhances GnRH-Induced Cell Apoptosis by Increasing GnRH Receptor Expression in Human Granulosa Cell Tumors |
title_full | Overexpression of Wild-Type but Not C134W Mutant FOXL2 Enhances GnRH-Induced Cell Apoptosis by Increasing GnRH Receptor Expression in Human Granulosa Cell Tumors |
title_fullStr | Overexpression of Wild-Type but Not C134W Mutant FOXL2 Enhances GnRH-Induced Cell Apoptosis by Increasing GnRH Receptor Expression in Human Granulosa Cell Tumors |
title_full_unstemmed | Overexpression of Wild-Type but Not C134W Mutant FOXL2 Enhances GnRH-Induced Cell Apoptosis by Increasing GnRH Receptor Expression in Human Granulosa Cell Tumors |
title_short | Overexpression of Wild-Type but Not C134W Mutant FOXL2 Enhances GnRH-Induced Cell Apoptosis by Increasing GnRH Receptor Expression in Human Granulosa Cell Tumors |
title_sort | overexpression of wild-type but not c134w mutant foxl2 enhances gnrh-induced cell apoptosis by increasing gnrh receptor expression in human granulosa cell tumors |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3553060/ https://www.ncbi.nlm.nih.gov/pubmed/23372819 http://dx.doi.org/10.1371/journal.pone.0055099 |
work_keys_str_mv | AT chengjungchien overexpressionofwildtypebutnotc134wmutantfoxl2enhancesgnrhinducedcellapoptosisbyincreasinggnrhreceptorexpressioninhumangranulosacelltumors AT klausenchristian overexpressionofwildtypebutnotc134wmutantfoxl2enhancesgnrhinducedcellapoptosisbyincreasinggnrhreceptorexpressioninhumangranulosacelltumors AT leungpeterck overexpressionofwildtypebutnotc134wmutantfoxl2enhancesgnrhinducedcellapoptosisbyincreasinggnrhreceptorexpressioninhumangranulosacelltumors |