Cargando…
Resampling Effects on Significance Analysis of Network Clustering and Ranking
Community detection helps us simplify the complex configuration of networks, but communities are reliable only if they are statistically significant. To detect statistically significant communities, a common approach is to resample the original network and analyze the communities. But resampling ass...
Autores principales: | Mirshahvalad, Atieh, Beauchesne, Olivier H., Archambault, Éric, Rosvall, Martin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3553110/ https://www.ncbi.nlm.nih.gov/pubmed/23372677 http://dx.doi.org/10.1371/journal.pone.0053943 |
Ejemplares similares
-
Significant Communities in Large Sparse Networks
por: Mirshahvalad, Atieh, et al.
Publicado: (2012) -
Detection of Significant Groups in Hierarchical Clustering by Resampling
por: Sebastiani, Paola, et al.
Publicado: (2016) -
Ranking treatments in frequentist network meta-analysis works without resampling methods
por: Rücker, Gerta, et al.
Publicado: (2015) -
The projack: a resampling approach to correct for ranking bias in high-throughput studies
por: Zhou, Yi-Hui, et al.
Publicado: (2016) -
New resampling method for evaluating stability of clusters
por: Gana Dresen, Irina M, et al.
Publicado: (2008)