Cargando…

MicroRNA-221 Induces Cell Survival and Cisplatin Resistance through PI3K/Akt Pathway in Human Osteosarcoma

BACKGROUND: MicroRNAs are short regulatory RNAs that negatively modulate protein expression at a post-transcriptional and/or translational level and are deeply involved in the pathogenesis of several types of cancers. Specifically, microRNA-221 (miR-221) is overexpressed in many human cancers, where...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Guangyi, Cai, Chengkui, Yang, Tongtao, Qiu, Xiuchun, Liao, Bo, Li, Wei, Ji, Zhenwei, Zhao, Jian, Zhao, Haien, Guo, Mingjun, Ma, Qiong, Xiao, Chun, Fan, Qingyu, Ma, Baoan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3553141/
https://www.ncbi.nlm.nih.gov/pubmed/23372675
http://dx.doi.org/10.1371/journal.pone.0053906
Descripción
Sumario:BACKGROUND: MicroRNAs are short regulatory RNAs that negatively modulate protein expression at a post-transcriptional and/or translational level and are deeply involved in the pathogenesis of several types of cancers. Specifically, microRNA-221 (miR-221) is overexpressed in many human cancers, wherein accumulating evidence indicates that it functions as an oncogene. However, the function of miR-221 in human osteosarcoma has not been totally elucidated. In the present study, the effects of miR-221 on osteosarcoma and the possible mechanism by which miR-221 affected the survival, apoptosis, and cisplatin resistance of osteosarcoma were investigated. METHODOLOGY/PRINCIPAL FINDINGS: Real-time quantitative PCR analysis revealed miR-221 was significantly upregulated in osteosarcoma cell lines than in osteoblasts. Both human osteosarcoma cell lines SOSP-9607 and MG63 were transfected with miR-221 mimic or inhibitor to regulate miR-221 expression. The effects of miR-221 were then assessed by cell viability, cell cycle analysis, apoptosis assay, and cisplatin resistance assay. In both cells, upregulation of miR-221 induced cell survival and cisplatin resistance and reduced cell apoptosis. In addition, knockdown of miR-221 inhibited cell growth and cisplatin resistance and induced cell apoptosis. Potential target genes of miR-221 were predicted using bioinformatics. Moreover, luciferase reporter assay and western blot confirmed that PTEN was a direct target of miR-221. Furthermore, introduction of PTEN cDNA lacking 3′-UTR or PI3K inhibitor LY294002 abrogated miR-221-induced cisplatin resistance. Finally, both miR-221 and PTEN expression levels in osteosarcoma samples were examined by using real-time quantitative PCR and immunohistochemistry. High miR-221 expression level and inverse correlation between miR-221 and PTEN levels were revealed in osteosarcoma tissues. CONCLUSIONS/SIGNIFICANCE: These results for the first time demonstrate that upregulation of miR-221 induces the malignant phenotype of human osteosarcoma whereas knockdown of miR-221 reverses this phenotype, suggesting that miR-221 could be a potential target for osteosarcoma treatment.