Cargando…
Integrative annotation of chromatin elements from ENCODE data
The ENCODE Project has generated a wealth of experimental information mapping diverse chromatin properties in several human cell lines. Although each such data track is independently informative toward the annotation of regulatory elements, their interrelations contain much richer information for th...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3553955/ https://www.ncbi.nlm.nih.gov/pubmed/23221638 http://dx.doi.org/10.1093/nar/gks1284 |
_version_ | 1782256847266250752 |
---|---|
author | Hoffman, Michael M. Ernst, Jason Wilder, Steven P. Kundaje, Anshul Harris, Robert S. Libbrecht, Max Giardine, Belinda Ellenbogen, Paul M. Bilmes, Jeffrey A. Birney, Ewan Hardison, Ross C. Dunham, Ian Kellis, Manolis Noble, William Stafford |
author_facet | Hoffman, Michael M. Ernst, Jason Wilder, Steven P. Kundaje, Anshul Harris, Robert S. Libbrecht, Max Giardine, Belinda Ellenbogen, Paul M. Bilmes, Jeffrey A. Birney, Ewan Hardison, Ross C. Dunham, Ian Kellis, Manolis Noble, William Stafford |
author_sort | Hoffman, Michael M. |
collection | PubMed |
description | The ENCODE Project has generated a wealth of experimental information mapping diverse chromatin properties in several human cell lines. Although each such data track is independently informative toward the annotation of regulatory elements, their interrelations contain much richer information for the systematic annotation of regulatory elements. To uncover these interrelations and to generate an interpretable summary of the massive datasets of the ENCODE Project, we apply unsupervised learning methodologies, converting dozens of chromatin datasets into discrete annotation maps of regulatory regions and other chromatin elements across the human genome. These methods rediscover and summarize diverse aspects of chromatin architecture, elucidate the interplay between chromatin activity and RNA transcription, and reveal that a large proportion of the genome lies in a quiescent state, even across multiple cell types. The resulting annotation of non-coding regulatory elements correlate strongly with mammalian evolutionary constraint, and provide an unbiased approach for evaluating metrics of evolutionary constraint in human. Lastly, we use the regulatory annotations to revisit previously uncharacterized disease-associated loci, resulting in focused, testable hypotheses through the lens of the chromatin landscape. |
format | Online Article Text |
id | pubmed-3553955 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-35539552013-01-24 Integrative annotation of chromatin elements from ENCODE data Hoffman, Michael M. Ernst, Jason Wilder, Steven P. Kundaje, Anshul Harris, Robert S. Libbrecht, Max Giardine, Belinda Ellenbogen, Paul M. Bilmes, Jeffrey A. Birney, Ewan Hardison, Ross C. Dunham, Ian Kellis, Manolis Noble, William Stafford Nucleic Acids Res Gene Regulation, Chromatin and Epigenetics The ENCODE Project has generated a wealth of experimental information mapping diverse chromatin properties in several human cell lines. Although each such data track is independently informative toward the annotation of regulatory elements, their interrelations contain much richer information for the systematic annotation of regulatory elements. To uncover these interrelations and to generate an interpretable summary of the massive datasets of the ENCODE Project, we apply unsupervised learning methodologies, converting dozens of chromatin datasets into discrete annotation maps of regulatory regions and other chromatin elements across the human genome. These methods rediscover and summarize diverse aspects of chromatin architecture, elucidate the interplay between chromatin activity and RNA transcription, and reveal that a large proportion of the genome lies in a quiescent state, even across multiple cell types. The resulting annotation of non-coding regulatory elements correlate strongly with mammalian evolutionary constraint, and provide an unbiased approach for evaluating metrics of evolutionary constraint in human. Lastly, we use the regulatory annotations to revisit previously uncharacterized disease-associated loci, resulting in focused, testable hypotheses through the lens of the chromatin landscape. Oxford University Press 2013-01 2012-12-05 /pmc/articles/PMC3553955/ /pubmed/23221638 http://dx.doi.org/10.1093/nar/gks1284 Text en © The Author(s) 2012. Published by Oxford University Press. http://creativecommons.org/licenses/by-nc/3.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc/3.0/), which permits non-commercial reuse, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com. |
spellingShingle | Gene Regulation, Chromatin and Epigenetics Hoffman, Michael M. Ernst, Jason Wilder, Steven P. Kundaje, Anshul Harris, Robert S. Libbrecht, Max Giardine, Belinda Ellenbogen, Paul M. Bilmes, Jeffrey A. Birney, Ewan Hardison, Ross C. Dunham, Ian Kellis, Manolis Noble, William Stafford Integrative annotation of chromatin elements from ENCODE data |
title | Integrative annotation of chromatin elements from ENCODE data |
title_full | Integrative annotation of chromatin elements from ENCODE data |
title_fullStr | Integrative annotation of chromatin elements from ENCODE data |
title_full_unstemmed | Integrative annotation of chromatin elements from ENCODE data |
title_short | Integrative annotation of chromatin elements from ENCODE data |
title_sort | integrative annotation of chromatin elements from encode data |
topic | Gene Regulation, Chromatin and Epigenetics |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3553955/ https://www.ncbi.nlm.nih.gov/pubmed/23221638 http://dx.doi.org/10.1093/nar/gks1284 |
work_keys_str_mv | AT hoffmanmichaelm integrativeannotationofchromatinelementsfromencodedata AT ernstjason integrativeannotationofchromatinelementsfromencodedata AT wilderstevenp integrativeannotationofchromatinelementsfromencodedata AT kundajeanshul integrativeannotationofchromatinelementsfromencodedata AT harrisroberts integrativeannotationofchromatinelementsfromencodedata AT libbrechtmax integrativeannotationofchromatinelementsfromencodedata AT giardinebelinda integrativeannotationofchromatinelementsfromencodedata AT ellenbogenpaulm integrativeannotationofchromatinelementsfromencodedata AT bilmesjeffreya integrativeannotationofchromatinelementsfromencodedata AT birneyewan integrativeannotationofchromatinelementsfromencodedata AT hardisonrossc integrativeannotationofchromatinelementsfromencodedata AT dunhamian integrativeannotationofchromatinelementsfromencodedata AT kellismanolis integrativeannotationofchromatinelementsfromencodedata AT noblewilliamstafford integrativeannotationofchromatinelementsfromencodedata |