Cargando…

Multiple RNA interactions position Mrd1 at the site of the small subunit pseudoknot within the 90S pre-ribosome

Ribosomal subunit biogenesis in eukaryotes is a complex multistep process. Mrd1 is an essential and conserved small (40S) ribosomal subunit synthesis factor that is required for early cleavages in the 35S pre-ribosomal RNA (rRNA). Yeast Mrd1 contains five RNA-binding domains (RBDs), all of which are...

Descripción completa

Detalles Bibliográficos
Autores principales: Segerstolpe, Åsa, Granneman, Sander, Björk, Petra, de Lima Alves, Flavia, Rappsilber, Juri, Andersson, Charlotta, Högbom, Martin, Tollervey, David, Wieslander, Lars
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2013
Materias:
RNA
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3553979/
https://www.ncbi.nlm.nih.gov/pubmed/23193268
http://dx.doi.org/10.1093/nar/gks1129
Descripción
Sumario:Ribosomal subunit biogenesis in eukaryotes is a complex multistep process. Mrd1 is an essential and conserved small (40S) ribosomal subunit synthesis factor that is required for early cleavages in the 35S pre-ribosomal RNA (rRNA). Yeast Mrd1 contains five RNA-binding domains (RBDs), all of which are necessary for optimal function of the protein. Proteomic data showed that Mrd1 is part of the early pre-ribosomal complexes, and deletion of individual RBDs perturbs the pre-ribosomal structure. In vivo ultraviolet cross-linking showed that Mrd1 binds to the pre-rRNA at two sites within the 18S region, in helix 27 (h27) and helix 28. The major binding site lies in h27, and mutational analyses shows that this interaction requires the RBD1-3 region of Mrd1. RBD2 plays the dominant role in h27 binding, but other RBDs also contribute directly. h27 and helix 28 are located close to the sequences that form the central pseudoknot, a key structural feature of the mature 40S subunit. We speculate that the modular structure of Mrd1 coordinates pseudoknot formation with pre-rRNA processing and subunit assembly.