Cargando…

Promiscuous behaviour of archaeal ribosomal proteins: Implications for eukaryotic ribosome evolution

In all living cells, protein synthesis occurs on ribonucleoprotein particles called ribosomes. Molecular models have been reported for complete bacterial 70S and eukaryotic 80S ribosomes; however, only molecular models of large 50S subunits have been reported for archaea. Here, we present a complete...

Descripción completa

Detalles Bibliográficos
Autores principales: Armache, Jean-Paul, Anger, Andreas M., Márquez, Viter, Franckenberg, Sibylle, Fröhlich, Thomas, Villa, Elizabeth, Berninghausen, Otto, Thomm, Michael, Arnold, Georg J., Beckmann, Roland, Wilson, Daniel N.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2013
Materias:
RNA
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3553981/
https://www.ncbi.nlm.nih.gov/pubmed/23222135
http://dx.doi.org/10.1093/nar/gks1259
_version_ 1782256853352185856
author Armache, Jean-Paul
Anger, Andreas M.
Márquez, Viter
Franckenberg, Sibylle
Fröhlich, Thomas
Villa, Elizabeth
Berninghausen, Otto
Thomm, Michael
Arnold, Georg J.
Beckmann, Roland
Wilson, Daniel N.
author_facet Armache, Jean-Paul
Anger, Andreas M.
Márquez, Viter
Franckenberg, Sibylle
Fröhlich, Thomas
Villa, Elizabeth
Berninghausen, Otto
Thomm, Michael
Arnold, Georg J.
Beckmann, Roland
Wilson, Daniel N.
author_sort Armache, Jean-Paul
collection PubMed
description In all living cells, protein synthesis occurs on ribonucleoprotein particles called ribosomes. Molecular models have been reported for complete bacterial 70S and eukaryotic 80S ribosomes; however, only molecular models of large 50S subunits have been reported for archaea. Here, we present a complete molecular model for the Pyrococcus furiosus 70S ribosome based on a 6.6 Å cryo-electron microscopy map. Moreover, we have determined cryo-electron microscopy reconstructions of the Euryarchaeota Methanococcus igneus and Thermococcus kodakaraensis 70S ribosomes and Crenarchaeota Staphylothermus marinus 50S subunit. Examination of these structures reveals a surprising promiscuous behavior of archaeal ribosomal proteins: We observe intersubunit promiscuity of S24e and L8e (L7ae), the latter binding to the head of the small subunit, analogous to S12e in eukaryotes. Moreover, L8e and L14e exhibit intrasubunit promiscuity, being present in two copies per archaeal 50S subunit, with the additional binding site of L14e analogous to the related eukaryotic r-protein L27e. Collectively, these findings suggest insights into the evolution of eukaryotic ribosomal proteins through increased copy number and binding site promiscuity.
format Online
Article
Text
id pubmed-3553981
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-35539812013-01-24 Promiscuous behaviour of archaeal ribosomal proteins: Implications for eukaryotic ribosome evolution Armache, Jean-Paul Anger, Andreas M. Márquez, Viter Franckenberg, Sibylle Fröhlich, Thomas Villa, Elizabeth Berninghausen, Otto Thomm, Michael Arnold, Georg J. Beckmann, Roland Wilson, Daniel N. Nucleic Acids Res RNA In all living cells, protein synthesis occurs on ribonucleoprotein particles called ribosomes. Molecular models have been reported for complete bacterial 70S and eukaryotic 80S ribosomes; however, only molecular models of large 50S subunits have been reported for archaea. Here, we present a complete molecular model for the Pyrococcus furiosus 70S ribosome based on a 6.6 Å cryo-electron microscopy map. Moreover, we have determined cryo-electron microscopy reconstructions of the Euryarchaeota Methanococcus igneus and Thermococcus kodakaraensis 70S ribosomes and Crenarchaeota Staphylothermus marinus 50S subunit. Examination of these structures reveals a surprising promiscuous behavior of archaeal ribosomal proteins: We observe intersubunit promiscuity of S24e and L8e (L7ae), the latter binding to the head of the small subunit, analogous to S12e in eukaryotes. Moreover, L8e and L14e exhibit intrasubunit promiscuity, being present in two copies per archaeal 50S subunit, with the additional binding site of L14e analogous to the related eukaryotic r-protein L27e. Collectively, these findings suggest insights into the evolution of eukaryotic ribosomal proteins through increased copy number and binding site promiscuity. Oxford University Press 2013-01 2012-12-06 /pmc/articles/PMC3553981/ /pubmed/23222135 http://dx.doi.org/10.1093/nar/gks1259 Text en © The Author(s) 2012. Published by Oxford University Press. http://creativecommons.org/licenses/by-nc/3.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc/3.0/), which permits non-commercial reuse, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com.
spellingShingle RNA
Armache, Jean-Paul
Anger, Andreas M.
Márquez, Viter
Franckenberg, Sibylle
Fröhlich, Thomas
Villa, Elizabeth
Berninghausen, Otto
Thomm, Michael
Arnold, Georg J.
Beckmann, Roland
Wilson, Daniel N.
Promiscuous behaviour of archaeal ribosomal proteins: Implications for eukaryotic ribosome evolution
title Promiscuous behaviour of archaeal ribosomal proteins: Implications for eukaryotic ribosome evolution
title_full Promiscuous behaviour of archaeal ribosomal proteins: Implications for eukaryotic ribosome evolution
title_fullStr Promiscuous behaviour of archaeal ribosomal proteins: Implications for eukaryotic ribosome evolution
title_full_unstemmed Promiscuous behaviour of archaeal ribosomal proteins: Implications for eukaryotic ribosome evolution
title_short Promiscuous behaviour of archaeal ribosomal proteins: Implications for eukaryotic ribosome evolution
title_sort promiscuous behaviour of archaeal ribosomal proteins: implications for eukaryotic ribosome evolution
topic RNA
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3553981/
https://www.ncbi.nlm.nih.gov/pubmed/23222135
http://dx.doi.org/10.1093/nar/gks1259
work_keys_str_mv AT armachejeanpaul promiscuousbehaviourofarchaealribosomalproteinsimplicationsforeukaryoticribosomeevolution
AT angerandreasm promiscuousbehaviourofarchaealribosomalproteinsimplicationsforeukaryoticribosomeevolution
AT marquezviter promiscuousbehaviourofarchaealribosomalproteinsimplicationsforeukaryoticribosomeevolution
AT franckenbergsibylle promiscuousbehaviourofarchaealribosomalproteinsimplicationsforeukaryoticribosomeevolution
AT frohlichthomas promiscuousbehaviourofarchaealribosomalproteinsimplicationsforeukaryoticribosomeevolution
AT villaelizabeth promiscuousbehaviourofarchaealribosomalproteinsimplicationsforeukaryoticribosomeevolution
AT berninghausenotto promiscuousbehaviourofarchaealribosomalproteinsimplicationsforeukaryoticribosomeevolution
AT thommmichael promiscuousbehaviourofarchaealribosomalproteinsimplicationsforeukaryoticribosomeevolution
AT arnoldgeorgj promiscuousbehaviourofarchaealribosomalproteinsimplicationsforeukaryoticribosomeevolution
AT beckmannroland promiscuousbehaviourofarchaealribosomalproteinsimplicationsforeukaryoticribosomeevolution
AT wilsondanieln promiscuousbehaviourofarchaealribosomalproteinsimplicationsforeukaryoticribosomeevolution