Cargando…
Estimation and partitioning of polygenic variation captured by common SNPs for Alzheimer's disease, multiple sclerosis and endometriosis
Common diseases such as endometriosis (ED), Alzheimer's disease (AD) and multiple sclerosis (MS) account for a significant proportion of the health care burden in many countries. Genome-wide association studies (GWASs) for these diseases have identified a number of individual genetic variants c...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3554206/ https://www.ncbi.nlm.nih.gov/pubmed/23193196 http://dx.doi.org/10.1093/hmg/dds491 |
_version_ | 1782256858495451136 |
---|---|
author | Lee, S. Hong Harold, Denise Nyholt, Dale R. Goddard, Michael E. Zondervan, Krina T. Williams, Julie Montgomery, Grant W. Wray, Naomi R. Visscher, Peter M. |
author_facet | Lee, S. Hong Harold, Denise Nyholt, Dale R. Goddard, Michael E. Zondervan, Krina T. Williams, Julie Montgomery, Grant W. Wray, Naomi R. Visscher, Peter M. |
author_sort | Lee, S. Hong |
collection | PubMed |
description | Common diseases such as endometriosis (ED), Alzheimer's disease (AD) and multiple sclerosis (MS) account for a significant proportion of the health care burden in many countries. Genome-wide association studies (GWASs) for these diseases have identified a number of individual genetic variants contributing to the risk of those diseases. However, the effect size for most variants is small and collectively the known variants explain only a small proportion of the estimated heritability. We used a linear mixed model to fit all single nucleotide polymorphisms (SNPs) simultaneously, and estimated genetic variances on the liability scale using SNPs from GWASs in unrelated individuals for these three diseases. For each of the three diseases, case and control samples were not all genotyped in the same laboratory. We demonstrate that a careful analysis can obtain robust estimates, but also that insufficient quality control (QC) of SNPs can lead to spurious results and that too stringent QC is likely to remove real genetic signals. Our estimates show that common SNPs on commercially available genotyping chips capture significant variation contributing to liability for all three diseases. The estimated proportion of total variation tagged by all SNPs was 0.26 (SE 0.04) for ED, 0.24 (SE 0.03) for AD and 0.30 (SE 0.03) for MS. Further, we partitioned the genetic variance explained into five categories by a minor allele frequency (MAF), by chromosomes and gene annotation. We provide strong evidence that a substantial proportion of variation in liability is explained by common SNPs, and thereby give insights into the genetic architecture of the diseases. |
format | Online Article Text |
id | pubmed-3554206 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-35542062013-01-24 Estimation and partitioning of polygenic variation captured by common SNPs for Alzheimer's disease, multiple sclerosis and endometriosis Lee, S. Hong Harold, Denise Nyholt, Dale R. Goddard, Michael E. Zondervan, Krina T. Williams, Julie Montgomery, Grant W. Wray, Naomi R. Visscher, Peter M. Hum Mol Genet Association Studies Articles Common diseases such as endometriosis (ED), Alzheimer's disease (AD) and multiple sclerosis (MS) account for a significant proportion of the health care burden in many countries. Genome-wide association studies (GWASs) for these diseases have identified a number of individual genetic variants contributing to the risk of those diseases. However, the effect size for most variants is small and collectively the known variants explain only a small proportion of the estimated heritability. We used a linear mixed model to fit all single nucleotide polymorphisms (SNPs) simultaneously, and estimated genetic variances on the liability scale using SNPs from GWASs in unrelated individuals for these three diseases. For each of the three diseases, case and control samples were not all genotyped in the same laboratory. We demonstrate that a careful analysis can obtain robust estimates, but also that insufficient quality control (QC) of SNPs can lead to spurious results and that too stringent QC is likely to remove real genetic signals. Our estimates show that common SNPs on commercially available genotyping chips capture significant variation contributing to liability for all three diseases. The estimated proportion of total variation tagged by all SNPs was 0.26 (SE 0.04) for ED, 0.24 (SE 0.03) for AD and 0.30 (SE 0.03) for MS. Further, we partitioned the genetic variance explained into five categories by a minor allele frequency (MAF), by chromosomes and gene annotation. We provide strong evidence that a substantial proportion of variation in liability is explained by common SNPs, and thereby give insights into the genetic architecture of the diseases. Oxford University Press 2013-02-15 2012-11-28 /pmc/articles/PMC3554206/ /pubmed/23193196 http://dx.doi.org/10.1093/hmg/dds491 Text en © The Author 2012. Published by Oxford University Press. http://creativecommons.org/licenses/by-nc/3.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc/3.0/), which permits non-commercial reuse, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com. |
spellingShingle | Association Studies Articles Lee, S. Hong Harold, Denise Nyholt, Dale R. Goddard, Michael E. Zondervan, Krina T. Williams, Julie Montgomery, Grant W. Wray, Naomi R. Visscher, Peter M. Estimation and partitioning of polygenic variation captured by common SNPs for Alzheimer's disease, multiple sclerosis and endometriosis |
title | Estimation and partitioning of polygenic variation captured by common SNPs for Alzheimer's disease, multiple sclerosis and endometriosis |
title_full | Estimation and partitioning of polygenic variation captured by common SNPs for Alzheimer's disease, multiple sclerosis and endometriosis |
title_fullStr | Estimation and partitioning of polygenic variation captured by common SNPs for Alzheimer's disease, multiple sclerosis and endometriosis |
title_full_unstemmed | Estimation and partitioning of polygenic variation captured by common SNPs for Alzheimer's disease, multiple sclerosis and endometriosis |
title_short | Estimation and partitioning of polygenic variation captured by common SNPs for Alzheimer's disease, multiple sclerosis and endometriosis |
title_sort | estimation and partitioning of polygenic variation captured by common snps for alzheimer's disease, multiple sclerosis and endometriosis |
topic | Association Studies Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3554206/ https://www.ncbi.nlm.nih.gov/pubmed/23193196 http://dx.doi.org/10.1093/hmg/dds491 |
work_keys_str_mv | AT leeshong estimationandpartitioningofpolygenicvariationcapturedbycommonsnpsforalzheimersdiseasemultiplesclerosisandendometriosis AT harolddenise estimationandpartitioningofpolygenicvariationcapturedbycommonsnpsforalzheimersdiseasemultiplesclerosisandendometriosis AT nyholtdaler estimationandpartitioningofpolygenicvariationcapturedbycommonsnpsforalzheimersdiseasemultiplesclerosisandendometriosis AT goddardmichaele estimationandpartitioningofpolygenicvariationcapturedbycommonsnpsforalzheimersdiseasemultiplesclerosisandendometriosis AT zondervankrinat estimationandpartitioningofpolygenicvariationcapturedbycommonsnpsforalzheimersdiseasemultiplesclerosisandendometriosis AT williamsjulie estimationandpartitioningofpolygenicvariationcapturedbycommonsnpsforalzheimersdiseasemultiplesclerosisandendometriosis AT montgomerygrantw estimationandpartitioningofpolygenicvariationcapturedbycommonsnpsforalzheimersdiseasemultiplesclerosisandendometriosis AT wraynaomir estimationandpartitioningofpolygenicvariationcapturedbycommonsnpsforalzheimersdiseasemultiplesclerosisandendometriosis AT visscherpeterm estimationandpartitioningofpolygenicvariationcapturedbycommonsnpsforalzheimersdiseasemultiplesclerosisandendometriosis |