Cargando…

In Situ Electrophysiological Examination of Pancreatic α Cells in the Streptozotocin-Induced Diabetes Model, Revealing the Cellular Basis of Glucagon Hypersecretion

Early-stage type 1 diabetes (T1D) exhibits hyperglucagonemia by undefined cellular mechanisms. Here we characterized α-cell voltage-gated ion channels in a streptozotocin (STZ)-induced diabetes model that lead to increased glucagon secretion mimicking T1D. GYY mice expressing enhanced yellow fluores...

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, Ya-Chi, Rupnik, Marjan S., Karimian, Negar, Herrera, Pedro L., Gilon, Patrick, Feng, Zhong-Ping, Gaisano, Herbert Y.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Diabetes Association 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3554363/
https://www.ncbi.nlm.nih.gov/pubmed/23043159
http://dx.doi.org/10.2337/db11-0786
Descripción
Sumario:Early-stage type 1 diabetes (T1D) exhibits hyperglucagonemia by undefined cellular mechanisms. Here we characterized α-cell voltage-gated ion channels in a streptozotocin (STZ)-induced diabetes model that lead to increased glucagon secretion mimicking T1D. GYY mice expressing enhanced yellow fluorescence protein in α cells were used to identify α cells within pancreas slices. Mice treated with low-dose STZ exhibited hyperglucagonemia, hyperglycemia, and glucose intolerance, with 71% reduction of β-cell mass. Although α-cell mass of STZ-treated mice remained unchanged, total pancreatic glucagon content was elevated, coinciding with increase in size of glucagon granules. Pancreas tissue slices enabled in situ examination of α-cell electrophysiology. α cells of STZ-treated mice exhibited the following: 1) increased exocytosis (serial depolarization-induced capacitance), 2) enhanced voltage-gated Na(+) current density, 3) reduced voltage-gated K(+) current density, and 4) increased action potential (AP) amplitude and firing frequency. Hyperglucagonemia in STZ-induced diabetes is thus likely due to increased glucagon content arising from enlarged glucagon granules and increased AP firing frequency and amplitude coinciding with enhanced Na(+) and reduced K(+) currents. These alterations may prime α cells in STZ-treated mice for more glucagon release per cell in response to low glucose stimulation. Thus, our study provides the first insight that STZ treatment sensitizes release mechanisms of α cells.