Cargando…

Contrast enhanced transesophageal echocardiography in patients with atrial fibrillation referred to electrical cardioversion improves atrial thrombus detection and may reduce associated thromboembolic events

AIMS: Transesophageal echocardiography (TEE) is the gold standard for the detection of thrombi in patients with atrial fibrillation (AF) before undergoing early electrical cardioversion (CV). However, TEE generates inconclusive results in a considerable number of patients. This study investigated th...

Descripción completa

Detalles Bibliográficos
Autores principales: Jung, Philip H, Mueller, Marisa, Schuhmann, Christoph, Eickhoff, Madeleine, Schneider, Philip, Seemueller, Gueler, Dutton, Raphael, Rieber, Johannes, Kääb, Stefan, Sohn, Hae-Young
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3554518/
https://www.ncbi.nlm.nih.gov/pubmed/23295101
http://dx.doi.org/10.1186/1476-7120-11-1
Descripción
Sumario:AIMS: Transesophageal echocardiography (TEE) is the gold standard for the detection of thrombi in patients with atrial fibrillation (AF) before undergoing early electrical cardioversion (CV). However, TEE generates inconclusive results in a considerable number of patients. This study investigated the influence of contrast enhancement on interpretability of TEE for the detection of left atrial (LA) thrombi compared to conventional TEE and assessed, whether there are differences in the rate of thromboembolic events after electrical cardioversion. METHODS: Of 180 patients with AF (51 females, 65.2±13 years) who were referred to CV, 90 were examined with native imaging and contrast enhancement within the same examination (group 1), and 90 were examined with native TEE alone and served as control (group 2). Cineloops of the multiplane examination of the LA and LA appendage (LAA) were stored digitally before and, in group 1, after intravenous bolus application of a transpulmonary contrast agent. Images of group 1 were assessed offline and the diagnosis of LA thrombi was made semi-quantitatively: 1= thrombus present; 2=inconclusive result; 3=no thrombus. The presence of spontaneous echocontrast (SEC) was registered and flow velocity in the LA appendage (LAA-flow) was measured. All patients in whom CV was performed were followed up for 1 year or until relapse of AF. CV related adverse events were defined as any thromboembolic event within 1 week after CV. RESULTS: No serious adverse events occurred during TEE and contrast enhanced imaging. In group 1 atrial thrombi were diagnosed in 14 (15.6%) during native and in 10 (11.1%) patients during contrast enhanced imaging (p<0.001). Of the 10 patients with thrombi in the contrast TEE group, 7 revealed a decreased LAA-flow (≤0,3m/s) and 8 showed moderate or marked SEC. Uncertain results were significantly more common during native imaging than with contrast enhanced TEE (16 vs. 5 patients, p<0.01). Thrombi could definitely be excluded in 60 (66.7%) during conventional and in 75 patients (83.3%) during contrast enhanced TEE (p<0.01). CV was performed subsequently after exclusion of thrombi and at the discretion of the investigator. In group 1, 74 patients (82.2%) were cardioverted and no patient suffered a CV related complication (p=0.084). In group 2, 76 patients (84.4%) underwent CV, of whom 3 suffered a thromboembolic complication after CV (2 strokes, 1 peripheral embolism). CONCLUSION: In patients with AF planned for CV contrast enhancement renders TEE images more interpretable, facilitates the exclusion of atrial thrombi and may reduce the rate of embolic adverse events.