Cargando…
Significance Analysis of Prognostic Signatures
A major goal in translational cancer research is to identify biological signatures driving cancer progression and metastasis. A common technique applied in genomics research is to cluster patients using gene expression data from a candidate prognostic gene set, and if the resulting clusters show sta...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3554539/ https://www.ncbi.nlm.nih.gov/pubmed/23365551 http://dx.doi.org/10.1371/journal.pcbi.1002875 |
_version_ | 1782256914450612224 |
---|---|
author | Beck, Andrew H. Knoblauch, Nicholas W. Hefti, Marco M. Kaplan, Jennifer Schnitt, Stuart J. Culhane, Aedin C. Schroeder, Markus S. Risch, Thomas Quackenbush, John Haibe-Kains, Benjamin |
author_facet | Beck, Andrew H. Knoblauch, Nicholas W. Hefti, Marco M. Kaplan, Jennifer Schnitt, Stuart J. Culhane, Aedin C. Schroeder, Markus S. Risch, Thomas Quackenbush, John Haibe-Kains, Benjamin |
author_sort | Beck, Andrew H. |
collection | PubMed |
description | A major goal in translational cancer research is to identify biological signatures driving cancer progression and metastasis. A common technique applied in genomics research is to cluster patients using gene expression data from a candidate prognostic gene set, and if the resulting clusters show statistically significant outcome stratification, to associate the gene set with prognosis, suggesting its biological and clinical importance. Recent work has questioned the validity of this approach by showing in several breast cancer data sets that “random” gene sets tend to cluster patients into prognostically variable subgroups. This work suggests that new rigorous statistical methods are needed to identify biologically informative prognostic gene sets. To address this problem, we developed Significance Analysis of Prognostic Signatures (SAPS) which integrates standard prognostic tests with a new prognostic significance test based on stratifying patients into prognostic subtypes with random gene sets. SAPS ensures that a significant gene set is not only able to stratify patients into prognostically variable groups, but is also enriched for genes showing strong univariate associations with patient prognosis, and performs significantly better than random gene sets. We use SAPS to perform a large meta-analysis (the largest completed to date) of prognostic pathways in breast and ovarian cancer and their molecular subtypes. Our analyses show that only a small subset of the gene sets found statistically significant using standard measures achieve significance by SAPS. We identify new prognostic signatures in breast and ovarian cancer and their corresponding molecular subtypes, and we show that prognostic signatures in ER negative breast cancer are more similar to prognostic signatures in ovarian cancer than to prognostic signatures in ER positive breast cancer. SAPS is a powerful new method for deriving robust prognostic biological signatures from clinically annotated genomic datasets. |
format | Online Article Text |
id | pubmed-3554539 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-35545392013-01-30 Significance Analysis of Prognostic Signatures Beck, Andrew H. Knoblauch, Nicholas W. Hefti, Marco M. Kaplan, Jennifer Schnitt, Stuart J. Culhane, Aedin C. Schroeder, Markus S. Risch, Thomas Quackenbush, John Haibe-Kains, Benjamin PLoS Comput Biol Research Article A major goal in translational cancer research is to identify biological signatures driving cancer progression and metastasis. A common technique applied in genomics research is to cluster patients using gene expression data from a candidate prognostic gene set, and if the resulting clusters show statistically significant outcome stratification, to associate the gene set with prognosis, suggesting its biological and clinical importance. Recent work has questioned the validity of this approach by showing in several breast cancer data sets that “random” gene sets tend to cluster patients into prognostically variable subgroups. This work suggests that new rigorous statistical methods are needed to identify biologically informative prognostic gene sets. To address this problem, we developed Significance Analysis of Prognostic Signatures (SAPS) which integrates standard prognostic tests with a new prognostic significance test based on stratifying patients into prognostic subtypes with random gene sets. SAPS ensures that a significant gene set is not only able to stratify patients into prognostically variable groups, but is also enriched for genes showing strong univariate associations with patient prognosis, and performs significantly better than random gene sets. We use SAPS to perform a large meta-analysis (the largest completed to date) of prognostic pathways in breast and ovarian cancer and their molecular subtypes. Our analyses show that only a small subset of the gene sets found statistically significant using standard measures achieve significance by SAPS. We identify new prognostic signatures in breast and ovarian cancer and their corresponding molecular subtypes, and we show that prognostic signatures in ER negative breast cancer are more similar to prognostic signatures in ovarian cancer than to prognostic signatures in ER positive breast cancer. SAPS is a powerful new method for deriving robust prognostic biological signatures from clinically annotated genomic datasets. Public Library of Science 2013-01-24 /pmc/articles/PMC3554539/ /pubmed/23365551 http://dx.doi.org/10.1371/journal.pcbi.1002875 Text en © 2013 Beck et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Beck, Andrew H. Knoblauch, Nicholas W. Hefti, Marco M. Kaplan, Jennifer Schnitt, Stuart J. Culhane, Aedin C. Schroeder, Markus S. Risch, Thomas Quackenbush, John Haibe-Kains, Benjamin Significance Analysis of Prognostic Signatures |
title | Significance Analysis of Prognostic Signatures |
title_full | Significance Analysis of Prognostic Signatures |
title_fullStr | Significance Analysis of Prognostic Signatures |
title_full_unstemmed | Significance Analysis of Prognostic Signatures |
title_short | Significance Analysis of Prognostic Signatures |
title_sort | significance analysis of prognostic signatures |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3554539/ https://www.ncbi.nlm.nih.gov/pubmed/23365551 http://dx.doi.org/10.1371/journal.pcbi.1002875 |
work_keys_str_mv | AT beckandrewh significanceanalysisofprognosticsignatures AT knoblauchnicholasw significanceanalysisofprognosticsignatures AT heftimarcom significanceanalysisofprognosticsignatures AT kaplanjennifer significanceanalysisofprognosticsignatures AT schnittstuartj significanceanalysisofprognosticsignatures AT culhaneaedinc significanceanalysisofprognosticsignatures AT schroedermarkuss significanceanalysisofprognosticsignatures AT rischthomas significanceanalysisofprognosticsignatures AT quackenbushjohn significanceanalysisofprognosticsignatures AT haibekainsbenjamin significanceanalysisofprognosticsignatures |