Cargando…

Comparative Genome Structure, Secondary Metabolite, and Effector Coding Capacity across Cochliobolus Pathogens

The genomes of five Cochliobolus heterostrophus strains, two Cochliobolus sativus strains, three additional Cochliobolus species (Cochliobolus victoriae, Cochliobolus carbonum, Cochliobolus miyabeanus), and closely related Setosphaeria turcica were sequenced at the Joint Genome Institute (JGI). The...

Descripción completa

Detalles Bibliográficos
Autores principales: Condon, Bradford J., Leng, Yueqiang, Wu, Dongliang, Bushley, Kathryn E., Ohm, Robin A., Otillar, Robert, Martin, Joel, Schackwitz, Wendy, Grimwood, Jane, MohdZainudin, NurAinIzzati, Xue, Chunsheng, Wang, Rui, Manning, Viola A., Dhillon, Braham, Tu, Zheng Jin, Steffenson, Brian J., Salamov, Asaf, Sun, Hui, Lowry, Steve, LaButti, Kurt, Han, James, Copeland, Alex, Lindquist, Erika, Barry, Kerrie, Schmutz, Jeremy, Baker, Scott E., Ciuffetti, Lynda M., Grigoriev, Igor V., Zhong, Shaobin, Turgeon, B. Gillian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3554632/
https://www.ncbi.nlm.nih.gov/pubmed/23357949
http://dx.doi.org/10.1371/journal.pgen.1003233
_version_ 1782256936552497152
author Condon, Bradford J.
Leng, Yueqiang
Wu, Dongliang
Bushley, Kathryn E.
Ohm, Robin A.
Otillar, Robert
Martin, Joel
Schackwitz, Wendy
Grimwood, Jane
MohdZainudin, NurAinIzzati
Xue, Chunsheng
Wang, Rui
Manning, Viola A.
Dhillon, Braham
Tu, Zheng Jin
Steffenson, Brian J.
Salamov, Asaf
Sun, Hui
Lowry, Steve
LaButti, Kurt
Han, James
Copeland, Alex
Lindquist, Erika
Barry, Kerrie
Schmutz, Jeremy
Baker, Scott E.
Ciuffetti, Lynda M.
Grigoriev, Igor V.
Zhong, Shaobin
Turgeon, B. Gillian
author_facet Condon, Bradford J.
Leng, Yueqiang
Wu, Dongliang
Bushley, Kathryn E.
Ohm, Robin A.
Otillar, Robert
Martin, Joel
Schackwitz, Wendy
Grimwood, Jane
MohdZainudin, NurAinIzzati
Xue, Chunsheng
Wang, Rui
Manning, Viola A.
Dhillon, Braham
Tu, Zheng Jin
Steffenson, Brian J.
Salamov, Asaf
Sun, Hui
Lowry, Steve
LaButti, Kurt
Han, James
Copeland, Alex
Lindquist, Erika
Barry, Kerrie
Schmutz, Jeremy
Baker, Scott E.
Ciuffetti, Lynda M.
Grigoriev, Igor V.
Zhong, Shaobin
Turgeon, B. Gillian
author_sort Condon, Bradford J.
collection PubMed
description The genomes of five Cochliobolus heterostrophus strains, two Cochliobolus sativus strains, three additional Cochliobolus species (Cochliobolus victoriae, Cochliobolus carbonum, Cochliobolus miyabeanus), and closely related Setosphaeria turcica were sequenced at the Joint Genome Institute (JGI). The datasets were used to identify SNPs between strains and species, unique genomic regions, core secondary metabolism genes, and small secreted protein (SSP) candidate effector encoding genes with a view towards pinpointing structural elements and gene content associated with specificity of these closely related fungi to different cereal hosts. Whole-genome alignment shows that three to five percent of each genome differs between strains of the same species, while a quarter of each genome differs between species. On average, SNP counts among field isolates of the same C. heterostrophus species are more than 25× higher than those between inbred lines and 50× lower than SNPs between Cochliobolus species. The suites of nonribosomal peptide synthetase (NRPS), polyketide synthase (PKS), and SSP–encoding genes are astoundingly diverse among species but remarkably conserved among isolates of the same species, whether inbred or field strains, except for defining examples that map to unique genomic regions. Functional analysis of several strain-unique PKSs and NRPSs reveal a strong correlation with a role in virulence.
format Online
Article
Text
id pubmed-3554632
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-35546322013-01-28 Comparative Genome Structure, Secondary Metabolite, and Effector Coding Capacity across Cochliobolus Pathogens Condon, Bradford J. Leng, Yueqiang Wu, Dongliang Bushley, Kathryn E. Ohm, Robin A. Otillar, Robert Martin, Joel Schackwitz, Wendy Grimwood, Jane MohdZainudin, NurAinIzzati Xue, Chunsheng Wang, Rui Manning, Viola A. Dhillon, Braham Tu, Zheng Jin Steffenson, Brian J. Salamov, Asaf Sun, Hui Lowry, Steve LaButti, Kurt Han, James Copeland, Alex Lindquist, Erika Barry, Kerrie Schmutz, Jeremy Baker, Scott E. Ciuffetti, Lynda M. Grigoriev, Igor V. Zhong, Shaobin Turgeon, B. Gillian PLoS Genet Research Article The genomes of five Cochliobolus heterostrophus strains, two Cochliobolus sativus strains, three additional Cochliobolus species (Cochliobolus victoriae, Cochliobolus carbonum, Cochliobolus miyabeanus), and closely related Setosphaeria turcica were sequenced at the Joint Genome Institute (JGI). The datasets were used to identify SNPs between strains and species, unique genomic regions, core secondary metabolism genes, and small secreted protein (SSP) candidate effector encoding genes with a view towards pinpointing structural elements and gene content associated with specificity of these closely related fungi to different cereal hosts. Whole-genome alignment shows that three to five percent of each genome differs between strains of the same species, while a quarter of each genome differs between species. On average, SNP counts among field isolates of the same C. heterostrophus species are more than 25× higher than those between inbred lines and 50× lower than SNPs between Cochliobolus species. The suites of nonribosomal peptide synthetase (NRPS), polyketide synthase (PKS), and SSP–encoding genes are astoundingly diverse among species but remarkably conserved among isolates of the same species, whether inbred or field strains, except for defining examples that map to unique genomic regions. Functional analysis of several strain-unique PKSs and NRPSs reveal a strong correlation with a role in virulence. Public Library of Science 2013-01-24 /pmc/articles/PMC3554632/ /pubmed/23357949 http://dx.doi.org/10.1371/journal.pgen.1003233 Text en https://creativecommons.org/publicdomain/zero/1.0/ This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration, which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose.
spellingShingle Research Article
Condon, Bradford J.
Leng, Yueqiang
Wu, Dongliang
Bushley, Kathryn E.
Ohm, Robin A.
Otillar, Robert
Martin, Joel
Schackwitz, Wendy
Grimwood, Jane
MohdZainudin, NurAinIzzati
Xue, Chunsheng
Wang, Rui
Manning, Viola A.
Dhillon, Braham
Tu, Zheng Jin
Steffenson, Brian J.
Salamov, Asaf
Sun, Hui
Lowry, Steve
LaButti, Kurt
Han, James
Copeland, Alex
Lindquist, Erika
Barry, Kerrie
Schmutz, Jeremy
Baker, Scott E.
Ciuffetti, Lynda M.
Grigoriev, Igor V.
Zhong, Shaobin
Turgeon, B. Gillian
Comparative Genome Structure, Secondary Metabolite, and Effector Coding Capacity across Cochliobolus Pathogens
title Comparative Genome Structure, Secondary Metabolite, and Effector Coding Capacity across Cochliobolus Pathogens
title_full Comparative Genome Structure, Secondary Metabolite, and Effector Coding Capacity across Cochliobolus Pathogens
title_fullStr Comparative Genome Structure, Secondary Metabolite, and Effector Coding Capacity across Cochliobolus Pathogens
title_full_unstemmed Comparative Genome Structure, Secondary Metabolite, and Effector Coding Capacity across Cochliobolus Pathogens
title_short Comparative Genome Structure, Secondary Metabolite, and Effector Coding Capacity across Cochliobolus Pathogens
title_sort comparative genome structure, secondary metabolite, and effector coding capacity across cochliobolus pathogens
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3554632/
https://www.ncbi.nlm.nih.gov/pubmed/23357949
http://dx.doi.org/10.1371/journal.pgen.1003233
work_keys_str_mv AT condonbradfordj comparativegenomestructuresecondarymetaboliteandeffectorcodingcapacityacrosscochlioboluspathogens
AT lengyueqiang comparativegenomestructuresecondarymetaboliteandeffectorcodingcapacityacrosscochlioboluspathogens
AT wudongliang comparativegenomestructuresecondarymetaboliteandeffectorcodingcapacityacrosscochlioboluspathogens
AT bushleykathryne comparativegenomestructuresecondarymetaboliteandeffectorcodingcapacityacrosscochlioboluspathogens
AT ohmrobina comparativegenomestructuresecondarymetaboliteandeffectorcodingcapacityacrosscochlioboluspathogens
AT otillarrobert comparativegenomestructuresecondarymetaboliteandeffectorcodingcapacityacrosscochlioboluspathogens
AT martinjoel comparativegenomestructuresecondarymetaboliteandeffectorcodingcapacityacrosscochlioboluspathogens
AT schackwitzwendy comparativegenomestructuresecondarymetaboliteandeffectorcodingcapacityacrosscochlioboluspathogens
AT grimwoodjane comparativegenomestructuresecondarymetaboliteandeffectorcodingcapacityacrosscochlioboluspathogens
AT mohdzainudinnurainizzati comparativegenomestructuresecondarymetaboliteandeffectorcodingcapacityacrosscochlioboluspathogens
AT xuechunsheng comparativegenomestructuresecondarymetaboliteandeffectorcodingcapacityacrosscochlioboluspathogens
AT wangrui comparativegenomestructuresecondarymetaboliteandeffectorcodingcapacityacrosscochlioboluspathogens
AT manningviolaa comparativegenomestructuresecondarymetaboliteandeffectorcodingcapacityacrosscochlioboluspathogens
AT dhillonbraham comparativegenomestructuresecondarymetaboliteandeffectorcodingcapacityacrosscochlioboluspathogens
AT tuzhengjin comparativegenomestructuresecondarymetaboliteandeffectorcodingcapacityacrosscochlioboluspathogens
AT steffensonbrianj comparativegenomestructuresecondarymetaboliteandeffectorcodingcapacityacrosscochlioboluspathogens
AT salamovasaf comparativegenomestructuresecondarymetaboliteandeffectorcodingcapacityacrosscochlioboluspathogens
AT sunhui comparativegenomestructuresecondarymetaboliteandeffectorcodingcapacityacrosscochlioboluspathogens
AT lowrysteve comparativegenomestructuresecondarymetaboliteandeffectorcodingcapacityacrosscochlioboluspathogens
AT labuttikurt comparativegenomestructuresecondarymetaboliteandeffectorcodingcapacityacrosscochlioboluspathogens
AT hanjames comparativegenomestructuresecondarymetaboliteandeffectorcodingcapacityacrosscochlioboluspathogens
AT copelandalex comparativegenomestructuresecondarymetaboliteandeffectorcodingcapacityacrosscochlioboluspathogens
AT lindquisterika comparativegenomestructuresecondarymetaboliteandeffectorcodingcapacityacrosscochlioboluspathogens
AT barrykerrie comparativegenomestructuresecondarymetaboliteandeffectorcodingcapacityacrosscochlioboluspathogens
AT schmutzjeremy comparativegenomestructuresecondarymetaboliteandeffectorcodingcapacityacrosscochlioboluspathogens
AT bakerscotte comparativegenomestructuresecondarymetaboliteandeffectorcodingcapacityacrosscochlioboluspathogens
AT ciuffettilyndam comparativegenomestructuresecondarymetaboliteandeffectorcodingcapacityacrosscochlioboluspathogens
AT grigorievigorv comparativegenomestructuresecondarymetaboliteandeffectorcodingcapacityacrosscochlioboluspathogens
AT zhongshaobin comparativegenomestructuresecondarymetaboliteandeffectorcodingcapacityacrosscochlioboluspathogens
AT turgeonbgillian comparativegenomestructuresecondarymetaboliteandeffectorcodingcapacityacrosscochlioboluspathogens