Cargando…
Large-scale evaluation of automated clinical note de-identification and its impact on information extraction
OBJECTIVE: (1) To evaluate a state-of-the-art natural language processing (NLP)-based approach to automatically de-identify a large set of diverse clinical notes. (2) To measure the impact of de-identification on the performance of information extraction algorithms on the de-identified documents. MA...
Autores principales: | Deleger, Louise, Molnar, Katalin, Savova, Guergana, Xia, Fei, Lingren, Todd, Li, Qi, Marsolo, Keith, Jegga, Anil, Kaiser, Megan, Stoutenborough, Laura, Solti, Imre |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BMJ Group
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3555323/ https://www.ncbi.nlm.nih.gov/pubmed/22859645 http://dx.doi.org/10.1136/amiajnl-2012-001012 |
Ejemplares similares
-
A sequence labeling approach to link medications and their attributes in clinical notes and clinical trial announcements for information extraction
por: Li, Qi, et al.
Publicado: (2013) -
Mining FDA drug labels for medical conditions
por: Li, Qi, et al.
Publicado: (2013) -
Evaluating the impact of pre-annotation on annotation speed and potential bias: natural language processing gold standard development for clinical named entity recognition in clinical trial announcements
por: Lingren, Todd, et al.
Publicado: (2014) -
Web 2.0-Based Crowdsourcing for High-Quality Gold Standard Development in Clinical Natural Language Processing
por: Zhai, Haijun, et al.
Publicado: (2013) -
Building public trust in uses of Health Insurance Portability and Accountability Act de-identified data
por: McGraw, Deven
Publicado: (2013)