Cargando…
Cationic Complexes of Hydrogen with Helium
High-resolution mass spectra of helium nanodroplets doped with hydrogen or deuterium reveal that copious amounts of helium can be bound to H(+), H(2)(+), H(3)(+), and larger hydrogen-cluster ions. All conceivable He(n)H(x)(+) stoichiometries are identified if their mass is below the limit of ≍120 u...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
WILEY-VCH Verlag
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3555426/ https://www.ncbi.nlm.nih.gov/pubmed/23090688 http://dx.doi.org/10.1002/cphc.201200664 |
Sumario: | High-resolution mass spectra of helium nanodroplets doped with hydrogen or deuterium reveal that copious amounts of helium can be bound to H(+), H(2)(+), H(3)(+), and larger hydrogen-cluster ions. All conceivable He(n)H(x)(+) stoichiometries are identified if their mass is below the limit of ≍120 u set by the resolution of the spectrometer. Anomalies in the ion yields of He(n)H(x)(+) for x=1, 2, or 3, and n≤30 reveal particularly stable cluster ions. Our results for He(n)H(1)(+) are consistent with conclusions drawn from previous experimental and theoretical studies which were limited to smaller cluster ions. The He(n)H(3)(+) series exhibits a pronounced anomaly at n=12 which was outside the reliable range of earlier experiments. Contrary to findings reported for other diatomic dopant molecules, the monomer ion (i.e. H(2)(+)) retains helium with much greater efficiency than hydrogen-cluster ions. |
---|