Cargando…

Regulation of Wound Healing by Granulocyte-Macrophage Colony-Stimulating Factor after Vocal Fold Injury

OBJECTIVES: Vocal fold (VF) scarring remains a therapeutic challenge. Granulocyte-macrophage colony-stimulating factor (GM-CSF) facilitates epithelial wound healing, and recently, growth factor therapy has been applied to promote tissue repair. This study was undertaken to investigate the effect of...

Descripción completa

Detalles Bibliográficos
Autores principales: Lim, Jae-Yol, Choi, Byung Hyune, Lee, Songyi, Jang, Yun Ho, Choi, Jeong-Seok, Kim, Young-Mo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3556034/
https://www.ncbi.nlm.nih.gov/pubmed/23372696
http://dx.doi.org/10.1371/journal.pone.0054256
Descripción
Sumario:OBJECTIVES: Vocal fold (VF) scarring remains a therapeutic challenge. Granulocyte-macrophage colony-stimulating factor (GM-CSF) facilitates epithelial wound healing, and recently, growth factor therapy has been applied to promote tissue repair. This study was undertaken to investigate the effect of GM-CSF on VF wound healing in vivo and in vitro. METHODS: VF scarring was induced in New Zealand white rabbits by direct injury. Immediately thereafter, either GM-CSF or PBS was injected into the VFs of rabbits. Endoscopic, histopathological, immunohistochemical, and biomechanical evaluations of VFs were performed at 3 months post-injury. Human vocal fold fibroblasts (hVFFs) were cultured with GM-CSF. Production of type I and III collagen was examined immunocytochemically, and the synthesis of elastin and hyaluronic acids was evaluated by ELISA. The mRNA levels of genes related to ECM components and ECM production-related growth factors, such as HGF and TGF-ß1, were examined by real time RT-PCR. RESULTS: The GM-CSF-treated VFs showed reduced collagen deposition in comparison to the PBS-injected controls (P<0.05). Immunohistochemical staining revealed lower amounts of type I collagen and fibronectin in the GM-CSF-treated VFs (P<0.05 and P<0.01, respectively). Viscous and elastic shear moduli of VF samples were significantly lower in the GM-CSF group than in the PBS-injected group (P<0.001 and P<0.01, respectively). Mucosal waves in the GM-CSF group showed significant improvement when compared to the PBS group (P = 0.0446). GM-CSF inhibited TGF-β1-induced collagen synthesis by hVFFs (P<0.05) and the production of hyaluronic acids increased at 72 hours post-treatment (P<0.05). The expressions of HAS-2, tropoelastin, MMP-1, HGF, and c-Met mRNA were significantly increased by GM-CSF, although at different time points (P<0.05). CONCLUSION: The present study shows that GM-CSF offers therapeutic potential for the remodeling of VF wounds and the promotion of VF regeneration.