Cargando…

Synthesis, in vitro antifungal evaluation and in silico study of 3-azolyl-4-chromanone phenylhydrazones

BACKGROUND: The currently available antifungal drugs suffer from toxicity, greatest potential drug interactions with other drugs, insufficient pharmacokinetics properties, and development of resistance. Thus, development of new antifungal agents with optimum pharmacokinetics and less toxicity is urg...

Descripción completa

Detalles Bibliográficos
Autores principales: Ayati, Adile, Falahati, Mehraban, Irannejad, Hamid, Emami, Saeed
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3556043/
https://www.ncbi.nlm.nih.gov/pubmed/23351328
http://dx.doi.org/10.1186/2008-2231-20-46
_version_ 1782257130906058752
author Ayati, Adile
Falahati, Mehraban
Irannejad, Hamid
Emami, Saeed
author_facet Ayati, Adile
Falahati, Mehraban
Irannejad, Hamid
Emami, Saeed
author_sort Ayati, Adile
collection PubMed
description BACKGROUND: The currently available antifungal drugs suffer from toxicity, greatest potential drug interactions with other drugs, insufficient pharmacokinetics properties, and development of resistance. Thus, development of new antifungal agents with optimum pharmacokinetics and less toxicity is urgent task. In the search for new azole antifungals, we have been previously described azolylchromanone oxime ethers as rigid analogs of oxiconazole. In continuation of our work, we incorporated phenylhydrazone moiety instead of oxime ether fragment in azolylchromanone derivatives. METHODS: The 3-azolyl-4-chromanone phenylhydrazones were synthesized via ring closure of 2-azolyl-2'-hydroxyacetophenones and subsequent reaction with phenylhydrazine. The biological activity of title compounds was evaluated against different pathogenic fungi including Candida albicans, Saccharomyces cerevisiae, Aspergillus niger, and Microsporum gypseum. Docking study, in silico toxicity risks and drug-likeness predictions were used to better define of title compounds as antifungal agents. RESULTS: The in vitro antifungal activity of compounds based on MIC values revealed that all compounds showed good antifungal activity against C. albicans, S. cerevisiae and M. gypseum at concentrations less than 16 μg/mL. Among the test compounds, 2-methyl-3-imidazolyl derivative 3b showed the highest values of drug-likeness and drug-score. CONCLUSION: The 3-azolyl-4-chromanone phenylhydrazones considered as analogs of 3-azolyl-4-chromanone oxime ethers basically designed as antifungal agents. The antifungal activity of title compounds was comparable to that of standard drug fluconazole. The drug-likeness data of synthesized compounds make them promising leads for future development of antifungal agents.
format Online
Article
Text
id pubmed-3556043
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-35560432013-01-31 Synthesis, in vitro antifungal evaluation and in silico study of 3-azolyl-4-chromanone phenylhydrazones Ayati, Adile Falahati, Mehraban Irannejad, Hamid Emami, Saeed Daru Research Article BACKGROUND: The currently available antifungal drugs suffer from toxicity, greatest potential drug interactions with other drugs, insufficient pharmacokinetics properties, and development of resistance. Thus, development of new antifungal agents with optimum pharmacokinetics and less toxicity is urgent task. In the search for new azole antifungals, we have been previously described azolylchromanone oxime ethers as rigid analogs of oxiconazole. In continuation of our work, we incorporated phenylhydrazone moiety instead of oxime ether fragment in azolylchromanone derivatives. METHODS: The 3-azolyl-4-chromanone phenylhydrazones were synthesized via ring closure of 2-azolyl-2'-hydroxyacetophenones and subsequent reaction with phenylhydrazine. The biological activity of title compounds was evaluated against different pathogenic fungi including Candida albicans, Saccharomyces cerevisiae, Aspergillus niger, and Microsporum gypseum. Docking study, in silico toxicity risks and drug-likeness predictions were used to better define of title compounds as antifungal agents. RESULTS: The in vitro antifungal activity of compounds based on MIC values revealed that all compounds showed good antifungal activity against C. albicans, S. cerevisiae and M. gypseum at concentrations less than 16 μg/mL. Among the test compounds, 2-methyl-3-imidazolyl derivative 3b showed the highest values of drug-likeness and drug-score. CONCLUSION: The 3-azolyl-4-chromanone phenylhydrazones considered as analogs of 3-azolyl-4-chromanone oxime ethers basically designed as antifungal agents. The antifungal activity of title compounds was comparable to that of standard drug fluconazole. The drug-likeness data of synthesized compounds make them promising leads for future development of antifungal agents. BioMed Central 2012-10-04 /pmc/articles/PMC3556043/ /pubmed/23351328 http://dx.doi.org/10.1186/2008-2231-20-46 Text en Copyright ©2012 Ayati et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Ayati, Adile
Falahati, Mehraban
Irannejad, Hamid
Emami, Saeed
Synthesis, in vitro antifungal evaluation and in silico study of 3-azolyl-4-chromanone phenylhydrazones
title Synthesis, in vitro antifungal evaluation and in silico study of 3-azolyl-4-chromanone phenylhydrazones
title_full Synthesis, in vitro antifungal evaluation and in silico study of 3-azolyl-4-chromanone phenylhydrazones
title_fullStr Synthesis, in vitro antifungal evaluation and in silico study of 3-azolyl-4-chromanone phenylhydrazones
title_full_unstemmed Synthesis, in vitro antifungal evaluation and in silico study of 3-azolyl-4-chromanone phenylhydrazones
title_short Synthesis, in vitro antifungal evaluation and in silico study of 3-azolyl-4-chromanone phenylhydrazones
title_sort synthesis, in vitro antifungal evaluation and in silico study of 3-azolyl-4-chromanone phenylhydrazones
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3556043/
https://www.ncbi.nlm.nih.gov/pubmed/23351328
http://dx.doi.org/10.1186/2008-2231-20-46
work_keys_str_mv AT ayatiadile synthesisinvitroantifungalevaluationandinsilicostudyof3azolyl4chromanonephenylhydrazones
AT falahatimehraban synthesisinvitroantifungalevaluationandinsilicostudyof3azolyl4chromanonephenylhydrazones
AT irannejadhamid synthesisinvitroantifungalevaluationandinsilicostudyof3azolyl4chromanonephenylhydrazones
AT emamisaeed synthesisinvitroantifungalevaluationandinsilicostudyof3azolyl4chromanonephenylhydrazones