Cargando…

Technique for sparing previously irradiated critical normal structures in salvage proton craniospinal irradiation

BACKGROUND: Cranial reirradiation is clinically appropriate in some cases but cumulative radiation dose to critical normal structures remains a practical concern. The authors developed a simple technique in 3D conformal proton craniospinal irradiation (CSI) to block organs at risk (OAR) while minimi...

Descripción completa

Detalles Bibliográficos
Autores principales: McDonald, Mark W, Wolanski, Mark R, Simmons, Joseph W, Buchsbaum, Jeffrey C
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3556160/
https://www.ncbi.nlm.nih.gov/pubmed/23311343
http://dx.doi.org/10.1186/1748-717X-8-14
_version_ 1782257158989021184
author McDonald, Mark W
Wolanski, Mark R
Simmons, Joseph W
Buchsbaum, Jeffrey C
author_facet McDonald, Mark W
Wolanski, Mark R
Simmons, Joseph W
Buchsbaum, Jeffrey C
author_sort McDonald, Mark W
collection PubMed
description BACKGROUND: Cranial reirradiation is clinically appropriate in some cases but cumulative radiation dose to critical normal structures remains a practical concern. The authors developed a simple technique in 3D conformal proton craniospinal irradiation (CSI) to block organs at risk (OAR) while minimizing underdosing of adjacent target brain tissue. METHODS: Two clinical cases illustrate the use of proton therapy to provide salvage CSI when a previously irradiated OAR required sparing from additional radiation dose. The prior radiation plan was coregistered to the treatment planning CT to create a planning organ at risk volume (PRV) around the OAR. Right and left lateral cranial whole brain proton apertures were created with a small block over the PRV. Then right and left lateral “inverse apertures” were generated, creating an aperture opening in the shape of the area previously blocked and blocking the area previously open. The inverse aperture opening was made one millimeter smaller than the original block to minimize the risk of dose overlap. The inverse apertures were used to irradiate the target volume lateral to the PRV, selecting a proton beam range to abut the 50% isodose line against either lateral edge of the PRV. Together, the 4 cranial proton fields created a region of complete dose avoidance around the OAR. Comparative photon treatment plans were generated with opposed lateral X-ray fields with custom blocks and coplanar intensity modulated radiation therapy optimized to avoid the PRV. Cumulative dose volume histograms were evaluated. RESULTS: Treatment plans were developed and successfully implemented to provide sparing of previously irradiated critical normal structures while treating target brain lateral to these structures. The absence of dose overlapping during irradiation through the inverse apertures was confirmed by film. Compared to the lateral X-ray and IMRT treatment plans, the proton CSI technique improved coverage of target brain tissue while providing the least additional radiation dose to the previously irradiated OAR. CONCLUSIONS: Proton craniospinal irradiation can be adapted to provide complete sparing of previously irradiated OARs. This technique may extend the option of reirradiation to patients otherwise deemed ineligible for further radiotherapy due to prior dose to critical normal structures.
format Online
Article
Text
id pubmed-3556160
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-35561602013-01-31 Technique for sparing previously irradiated critical normal structures in salvage proton craniospinal irradiation McDonald, Mark W Wolanski, Mark R Simmons, Joseph W Buchsbaum, Jeffrey C Radiat Oncol Methodology BACKGROUND: Cranial reirradiation is clinically appropriate in some cases but cumulative radiation dose to critical normal structures remains a practical concern. The authors developed a simple technique in 3D conformal proton craniospinal irradiation (CSI) to block organs at risk (OAR) while minimizing underdosing of adjacent target brain tissue. METHODS: Two clinical cases illustrate the use of proton therapy to provide salvage CSI when a previously irradiated OAR required sparing from additional radiation dose. The prior radiation plan was coregistered to the treatment planning CT to create a planning organ at risk volume (PRV) around the OAR. Right and left lateral cranial whole brain proton apertures were created with a small block over the PRV. Then right and left lateral “inverse apertures” were generated, creating an aperture opening in the shape of the area previously blocked and blocking the area previously open. The inverse aperture opening was made one millimeter smaller than the original block to minimize the risk of dose overlap. The inverse apertures were used to irradiate the target volume lateral to the PRV, selecting a proton beam range to abut the 50% isodose line against either lateral edge of the PRV. Together, the 4 cranial proton fields created a region of complete dose avoidance around the OAR. Comparative photon treatment plans were generated with opposed lateral X-ray fields with custom blocks and coplanar intensity modulated radiation therapy optimized to avoid the PRV. Cumulative dose volume histograms were evaluated. RESULTS: Treatment plans were developed and successfully implemented to provide sparing of previously irradiated critical normal structures while treating target brain lateral to these structures. The absence of dose overlapping during irradiation through the inverse apertures was confirmed by film. Compared to the lateral X-ray and IMRT treatment plans, the proton CSI technique improved coverage of target brain tissue while providing the least additional radiation dose to the previously irradiated OAR. CONCLUSIONS: Proton craniospinal irradiation can be adapted to provide complete sparing of previously irradiated OARs. This technique may extend the option of reirradiation to patients otherwise deemed ineligible for further radiotherapy due to prior dose to critical normal structures. BioMed Central 2013-01-12 /pmc/articles/PMC3556160/ /pubmed/23311343 http://dx.doi.org/10.1186/1748-717X-8-14 Text en Copyright ©2013 McDonald et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Methodology
McDonald, Mark W
Wolanski, Mark R
Simmons, Joseph W
Buchsbaum, Jeffrey C
Technique for sparing previously irradiated critical normal structures in salvage proton craniospinal irradiation
title Technique for sparing previously irradiated critical normal structures in salvage proton craniospinal irradiation
title_full Technique for sparing previously irradiated critical normal structures in salvage proton craniospinal irradiation
title_fullStr Technique for sparing previously irradiated critical normal structures in salvage proton craniospinal irradiation
title_full_unstemmed Technique for sparing previously irradiated critical normal structures in salvage proton craniospinal irradiation
title_short Technique for sparing previously irradiated critical normal structures in salvage proton craniospinal irradiation
title_sort technique for sparing previously irradiated critical normal structures in salvage proton craniospinal irradiation
topic Methodology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3556160/
https://www.ncbi.nlm.nih.gov/pubmed/23311343
http://dx.doi.org/10.1186/1748-717X-8-14
work_keys_str_mv AT mcdonaldmarkw techniqueforsparingpreviouslyirradiatedcriticalnormalstructuresinsalvageprotoncraniospinalirradiation
AT wolanskimarkr techniqueforsparingpreviouslyirradiatedcriticalnormalstructuresinsalvageprotoncraniospinalirradiation
AT simmonsjosephw techniqueforsparingpreviouslyirradiatedcriticalnormalstructuresinsalvageprotoncraniospinalirradiation
AT buchsbaumjeffreyc techniqueforsparingpreviouslyirradiatedcriticalnormalstructuresinsalvageprotoncraniospinalirradiation