Cargando…

Nanoparticle Layer Deposition for Plasmonic Tuning of Microstructured Optical Fibers

Plasmonic nanoparticles with spectral properties in the UV-to-near-IR range have a large potential for the development of innovative optical devices. Similarly, microstructured optical fibers (MOFs) represent a promising platform technology for fully integrated, next-generation plasmonic devices; th...

Descripción completa

Detalles Bibliográficos
Autores principales: Csaki, Andrea, Jahn, Franka, Latka, Ines, Henkel, Thomas, Malsch, Daniell, Schneider, Thomas, Schröder, Kerstin, Schuster, Kay, Schwuchow, Anka, Spittel, Ron, Zopf, David, Fritzsche, Wolfgang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: WILEY-VCH Verlag 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3556691/
https://www.ncbi.nlm.nih.gov/pubmed/20957761
http://dx.doi.org/10.1002/smll.201001071
Descripción
Sumario:Plasmonic nanoparticles with spectral properties in the UV-to-near-IR range have a large potential for the development of innovative optical devices. Similarly, microstructured optical fibers (MOFs) represent a promising platform technology for fully integrated, next-generation plasmonic devices; therefore, the combination of MOFs and plasmonic nanoparticles would open the way for novel applications, especially in sensing applications. In this Full Paper, a cost-effective, innovative nanoparticle layer deposition (NLD) technique is demonstrated for the preparation of well-defined plasmonic layers of selected particles inside the channels of MOFs. This dynamic chemical deposition method utilizes a combination of microfluidics and self-assembled monolayer (SAM) techniques, leading to a longitudinal homogeneous particle density as long as several meters. By using particles with predefined plasmonic properties, such as the resonance wavelength, fibers with particle-adequate spectral characteristics can be prepared. The application of such fibers for refractive-index sensing yields a sensitivity of about 78 nm per refractive index unit (RIU). These novel, plasmonically tuned optical fibers with freely selected, application-tailored optical properties present extensive possibilities for applications in localized surface plasmon resonance (LSPR) sensing.