Cargando…

Nanoparticle Layer Deposition for Plasmonic Tuning of Microstructured Optical Fibers

Plasmonic nanoparticles with spectral properties in the UV-to-near-IR range have a large potential for the development of innovative optical devices. Similarly, microstructured optical fibers (MOFs) represent a promising platform technology for fully integrated, next-generation plasmonic devices; th...

Descripción completa

Detalles Bibliográficos
Autores principales: Csaki, Andrea, Jahn, Franka, Latka, Ines, Henkel, Thomas, Malsch, Daniell, Schneider, Thomas, Schröder, Kerstin, Schuster, Kay, Schwuchow, Anka, Spittel, Ron, Zopf, David, Fritzsche, Wolfgang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: WILEY-VCH Verlag 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3556691/
https://www.ncbi.nlm.nih.gov/pubmed/20957761
http://dx.doi.org/10.1002/smll.201001071
_version_ 1782257222262194176
author Csaki, Andrea
Jahn, Franka
Latka, Ines
Henkel, Thomas
Malsch, Daniell
Schneider, Thomas
Schröder, Kerstin
Schuster, Kay
Schwuchow, Anka
Spittel, Ron
Zopf, David
Fritzsche, Wolfgang
author_facet Csaki, Andrea
Jahn, Franka
Latka, Ines
Henkel, Thomas
Malsch, Daniell
Schneider, Thomas
Schröder, Kerstin
Schuster, Kay
Schwuchow, Anka
Spittel, Ron
Zopf, David
Fritzsche, Wolfgang
author_sort Csaki, Andrea
collection PubMed
description Plasmonic nanoparticles with spectral properties in the UV-to-near-IR range have a large potential for the development of innovative optical devices. Similarly, microstructured optical fibers (MOFs) represent a promising platform technology for fully integrated, next-generation plasmonic devices; therefore, the combination of MOFs and plasmonic nanoparticles would open the way for novel applications, especially in sensing applications. In this Full Paper, a cost-effective, innovative nanoparticle layer deposition (NLD) technique is demonstrated for the preparation of well-defined plasmonic layers of selected particles inside the channels of MOFs. This dynamic chemical deposition method utilizes a combination of microfluidics and self-assembled monolayer (SAM) techniques, leading to a longitudinal homogeneous particle density as long as several meters. By using particles with predefined plasmonic properties, such as the resonance wavelength, fibers with particle-adequate spectral characteristics can be prepared. The application of such fibers for refractive-index sensing yields a sensitivity of about 78 nm per refractive index unit (RIU). These novel, plasmonically tuned optical fibers with freely selected, application-tailored optical properties present extensive possibilities for applications in localized surface plasmon resonance (LSPR) sensing.
format Online
Article
Text
id pubmed-3556691
institution National Center for Biotechnology Information
language English
publishDate 2010
publisher WILEY-VCH Verlag
record_format MEDLINE/PubMed
spelling pubmed-35566912013-01-28 Nanoparticle Layer Deposition for Plasmonic Tuning of Microstructured Optical Fibers Csaki, Andrea Jahn, Franka Latka, Ines Henkel, Thomas Malsch, Daniell Schneider, Thomas Schröder, Kerstin Schuster, Kay Schwuchow, Anka Spittel, Ron Zopf, David Fritzsche, Wolfgang Small Full Papers Plasmonic nanoparticles with spectral properties in the UV-to-near-IR range have a large potential for the development of innovative optical devices. Similarly, microstructured optical fibers (MOFs) represent a promising platform technology for fully integrated, next-generation plasmonic devices; therefore, the combination of MOFs and plasmonic nanoparticles would open the way for novel applications, especially in sensing applications. In this Full Paper, a cost-effective, innovative nanoparticle layer deposition (NLD) technique is demonstrated for the preparation of well-defined plasmonic layers of selected particles inside the channels of MOFs. This dynamic chemical deposition method utilizes a combination of microfluidics and self-assembled monolayer (SAM) techniques, leading to a longitudinal homogeneous particle density as long as several meters. By using particles with predefined plasmonic properties, such as the resonance wavelength, fibers with particle-adequate spectral characteristics can be prepared. The application of such fibers for refractive-index sensing yields a sensitivity of about 78 nm per refractive index unit (RIU). These novel, plasmonically tuned optical fibers with freely selected, application-tailored optical properties present extensive possibilities for applications in localized surface plasmon resonance (LSPR) sensing. WILEY-VCH Verlag 2010-11-22 2010-10-19 /pmc/articles/PMC3556691/ /pubmed/20957761 http://dx.doi.org/10.1002/smll.201001071 Text en Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim http://creativecommons.org/licenses/by/2.5/ Re-use of this article is permitted in accordance with the Creative Commons Deed, Attribution 2.5, which does not permit commercial exploitation.
spellingShingle Full Papers
Csaki, Andrea
Jahn, Franka
Latka, Ines
Henkel, Thomas
Malsch, Daniell
Schneider, Thomas
Schröder, Kerstin
Schuster, Kay
Schwuchow, Anka
Spittel, Ron
Zopf, David
Fritzsche, Wolfgang
Nanoparticle Layer Deposition for Plasmonic Tuning of Microstructured Optical Fibers
title Nanoparticle Layer Deposition for Plasmonic Tuning of Microstructured Optical Fibers
title_full Nanoparticle Layer Deposition for Plasmonic Tuning of Microstructured Optical Fibers
title_fullStr Nanoparticle Layer Deposition for Plasmonic Tuning of Microstructured Optical Fibers
title_full_unstemmed Nanoparticle Layer Deposition for Plasmonic Tuning of Microstructured Optical Fibers
title_short Nanoparticle Layer Deposition for Plasmonic Tuning of Microstructured Optical Fibers
title_sort nanoparticle layer deposition for plasmonic tuning of microstructured optical fibers
topic Full Papers
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3556691/
https://www.ncbi.nlm.nih.gov/pubmed/20957761
http://dx.doi.org/10.1002/smll.201001071
work_keys_str_mv AT csakiandrea nanoparticlelayerdepositionforplasmonictuningofmicrostructuredopticalfibers
AT jahnfranka nanoparticlelayerdepositionforplasmonictuningofmicrostructuredopticalfibers
AT latkaines nanoparticlelayerdepositionforplasmonictuningofmicrostructuredopticalfibers
AT henkelthomas nanoparticlelayerdepositionforplasmonictuningofmicrostructuredopticalfibers
AT malschdaniell nanoparticlelayerdepositionforplasmonictuningofmicrostructuredopticalfibers
AT schneiderthomas nanoparticlelayerdepositionforplasmonictuningofmicrostructuredopticalfibers
AT schroderkerstin nanoparticlelayerdepositionforplasmonictuningofmicrostructuredopticalfibers
AT schusterkay nanoparticlelayerdepositionforplasmonictuningofmicrostructuredopticalfibers
AT schwuchowanka nanoparticlelayerdepositionforplasmonictuningofmicrostructuredopticalfibers
AT spittelron nanoparticlelayerdepositionforplasmonictuningofmicrostructuredopticalfibers
AT zopfdavid nanoparticlelayerdepositionforplasmonictuningofmicrostructuredopticalfibers
AT fritzschewolfgang nanoparticlelayerdepositionforplasmonictuningofmicrostructuredopticalfibers