Cargando…
Nanoparticle Layer Deposition for Plasmonic Tuning of Microstructured Optical Fibers
Plasmonic nanoparticles with spectral properties in the UV-to-near-IR range have a large potential for the development of innovative optical devices. Similarly, microstructured optical fibers (MOFs) represent a promising platform technology for fully integrated, next-generation plasmonic devices; th...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
WILEY-VCH Verlag
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3556691/ https://www.ncbi.nlm.nih.gov/pubmed/20957761 http://dx.doi.org/10.1002/smll.201001071 |
_version_ | 1782257222262194176 |
---|---|
author | Csaki, Andrea Jahn, Franka Latka, Ines Henkel, Thomas Malsch, Daniell Schneider, Thomas Schröder, Kerstin Schuster, Kay Schwuchow, Anka Spittel, Ron Zopf, David Fritzsche, Wolfgang |
author_facet | Csaki, Andrea Jahn, Franka Latka, Ines Henkel, Thomas Malsch, Daniell Schneider, Thomas Schröder, Kerstin Schuster, Kay Schwuchow, Anka Spittel, Ron Zopf, David Fritzsche, Wolfgang |
author_sort | Csaki, Andrea |
collection | PubMed |
description | Plasmonic nanoparticles with spectral properties in the UV-to-near-IR range have a large potential for the development of innovative optical devices. Similarly, microstructured optical fibers (MOFs) represent a promising platform technology for fully integrated, next-generation plasmonic devices; therefore, the combination of MOFs and plasmonic nanoparticles would open the way for novel applications, especially in sensing applications. In this Full Paper, a cost-effective, innovative nanoparticle layer deposition (NLD) technique is demonstrated for the preparation of well-defined plasmonic layers of selected particles inside the channels of MOFs. This dynamic chemical deposition method utilizes a combination of microfluidics and self-assembled monolayer (SAM) techniques, leading to a longitudinal homogeneous particle density as long as several meters. By using particles with predefined plasmonic properties, such as the resonance wavelength, fibers with particle-adequate spectral characteristics can be prepared. The application of such fibers for refractive-index sensing yields a sensitivity of about 78 nm per refractive index unit (RIU). These novel, plasmonically tuned optical fibers with freely selected, application-tailored optical properties present extensive possibilities for applications in localized surface plasmon resonance (LSPR) sensing. |
format | Online Article Text |
id | pubmed-3556691 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | WILEY-VCH Verlag |
record_format | MEDLINE/PubMed |
spelling | pubmed-35566912013-01-28 Nanoparticle Layer Deposition for Plasmonic Tuning of Microstructured Optical Fibers Csaki, Andrea Jahn, Franka Latka, Ines Henkel, Thomas Malsch, Daniell Schneider, Thomas Schröder, Kerstin Schuster, Kay Schwuchow, Anka Spittel, Ron Zopf, David Fritzsche, Wolfgang Small Full Papers Plasmonic nanoparticles with spectral properties in the UV-to-near-IR range have a large potential for the development of innovative optical devices. Similarly, microstructured optical fibers (MOFs) represent a promising platform technology for fully integrated, next-generation plasmonic devices; therefore, the combination of MOFs and plasmonic nanoparticles would open the way for novel applications, especially in sensing applications. In this Full Paper, a cost-effective, innovative nanoparticle layer deposition (NLD) technique is demonstrated for the preparation of well-defined plasmonic layers of selected particles inside the channels of MOFs. This dynamic chemical deposition method utilizes a combination of microfluidics and self-assembled monolayer (SAM) techniques, leading to a longitudinal homogeneous particle density as long as several meters. By using particles with predefined plasmonic properties, such as the resonance wavelength, fibers with particle-adequate spectral characteristics can be prepared. The application of such fibers for refractive-index sensing yields a sensitivity of about 78 nm per refractive index unit (RIU). These novel, plasmonically tuned optical fibers with freely selected, application-tailored optical properties present extensive possibilities for applications in localized surface plasmon resonance (LSPR) sensing. WILEY-VCH Verlag 2010-11-22 2010-10-19 /pmc/articles/PMC3556691/ /pubmed/20957761 http://dx.doi.org/10.1002/smll.201001071 Text en Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim http://creativecommons.org/licenses/by/2.5/ Re-use of this article is permitted in accordance with the Creative Commons Deed, Attribution 2.5, which does not permit commercial exploitation. |
spellingShingle | Full Papers Csaki, Andrea Jahn, Franka Latka, Ines Henkel, Thomas Malsch, Daniell Schneider, Thomas Schröder, Kerstin Schuster, Kay Schwuchow, Anka Spittel, Ron Zopf, David Fritzsche, Wolfgang Nanoparticle Layer Deposition for Plasmonic Tuning of Microstructured Optical Fibers |
title | Nanoparticle Layer Deposition for Plasmonic Tuning of Microstructured Optical Fibers |
title_full | Nanoparticle Layer Deposition for Plasmonic Tuning of Microstructured Optical Fibers |
title_fullStr | Nanoparticle Layer Deposition for Plasmonic Tuning of Microstructured Optical Fibers |
title_full_unstemmed | Nanoparticle Layer Deposition for Plasmonic Tuning of Microstructured Optical Fibers |
title_short | Nanoparticle Layer Deposition for Plasmonic Tuning of Microstructured Optical Fibers |
title_sort | nanoparticle layer deposition for plasmonic tuning of microstructured optical fibers |
topic | Full Papers |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3556691/ https://www.ncbi.nlm.nih.gov/pubmed/20957761 http://dx.doi.org/10.1002/smll.201001071 |
work_keys_str_mv | AT csakiandrea nanoparticlelayerdepositionforplasmonictuningofmicrostructuredopticalfibers AT jahnfranka nanoparticlelayerdepositionforplasmonictuningofmicrostructuredopticalfibers AT latkaines nanoparticlelayerdepositionforplasmonictuningofmicrostructuredopticalfibers AT henkelthomas nanoparticlelayerdepositionforplasmonictuningofmicrostructuredopticalfibers AT malschdaniell nanoparticlelayerdepositionforplasmonictuningofmicrostructuredopticalfibers AT schneiderthomas nanoparticlelayerdepositionforplasmonictuningofmicrostructuredopticalfibers AT schroderkerstin nanoparticlelayerdepositionforplasmonictuningofmicrostructuredopticalfibers AT schusterkay nanoparticlelayerdepositionforplasmonictuningofmicrostructuredopticalfibers AT schwuchowanka nanoparticlelayerdepositionforplasmonictuningofmicrostructuredopticalfibers AT spittelron nanoparticlelayerdepositionforplasmonictuningofmicrostructuredopticalfibers AT zopfdavid nanoparticlelayerdepositionforplasmonictuningofmicrostructuredopticalfibers AT fritzschewolfgang nanoparticlelayerdepositionforplasmonictuningofmicrostructuredopticalfibers |