Cargando…
Global Transcriptome Profile of Cryptococcus neoformans during Exposure to Hydrogen Peroxide Induced Oxidative Stress
The ability of the opportunistic fungal pathogen Cryptococcus neoformans to resist oxidative stress is one of its most important virulence related traits. To cope with the deleterious effect of cellular damage caused by the oxidative burst inside the macrophages, C. neoformans has developed multilay...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3557267/ https://www.ncbi.nlm.nih.gov/pubmed/23383070 http://dx.doi.org/10.1371/journal.pone.0055110 |
_version_ | 1782257298877448192 |
---|---|
author | Upadhya, Rajendra Campbell, Leona T. Donlin, Maureen J. Aurora, Rajeev Lodge, Jennifer K. |
author_facet | Upadhya, Rajendra Campbell, Leona T. Donlin, Maureen J. Aurora, Rajeev Lodge, Jennifer K. |
author_sort | Upadhya, Rajendra |
collection | PubMed |
description | The ability of the opportunistic fungal pathogen Cryptococcus neoformans to resist oxidative stress is one of its most important virulence related traits. To cope with the deleterious effect of cellular damage caused by the oxidative burst inside the macrophages, C. neoformans has developed multilayered redundant molecular responses to neutralize the stress, to repair the damage and to eventually grow inside the hostile environment of the phagosome. We used microarray analysis of cells treated with hydrogen peroxide (H(2)O(2)) at multiple time points in a nutrient defined medium to identify a transcriptional signature associated with oxidative stress. We discovered that the composition of the medium in which fungal cells were grown and treated had a profound effect on their capacity to degrade exogenous H(2)O(2). We determined the kinetics of H(2)O(2) breakdown by growing yeast cells under different conditions and accordingly selected an appropriate media composition and range of time points for isolating RNA for hybridization. Microarray analysis revealed a robust transient transcriptional response and the intensity of the global response was consistent with the kinetics of H(2)O(2) breakdown by treated cells. Gene ontology analysis of differentially expressed genes related to oxidation-reduction, metabolic process and protein catabolic processes identified potential roles of mitochondrial function and protein ubiquitination in oxidative stress resistance. Interestingly, the metabolic pathway adaptation of C. neoformans to H(2)O(2) treatment was remarkably distinct from the response of other fungal organisms to oxidative stress. We also identified the induction of an antifungal drug resistance response upon the treatment of C. neoformans with H(2)O(2). These results highlight the complexity of the oxidative stress response and offer possible new avenues for improving our understanding of mechanisms of oxidative stress resistance in C. neoformans. |
format | Online Article Text |
id | pubmed-3557267 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-35572672013-02-04 Global Transcriptome Profile of Cryptococcus neoformans during Exposure to Hydrogen Peroxide Induced Oxidative Stress Upadhya, Rajendra Campbell, Leona T. Donlin, Maureen J. Aurora, Rajeev Lodge, Jennifer K. PLoS One Research Article The ability of the opportunistic fungal pathogen Cryptococcus neoformans to resist oxidative stress is one of its most important virulence related traits. To cope with the deleterious effect of cellular damage caused by the oxidative burst inside the macrophages, C. neoformans has developed multilayered redundant molecular responses to neutralize the stress, to repair the damage and to eventually grow inside the hostile environment of the phagosome. We used microarray analysis of cells treated with hydrogen peroxide (H(2)O(2)) at multiple time points in a nutrient defined medium to identify a transcriptional signature associated with oxidative stress. We discovered that the composition of the medium in which fungal cells were grown and treated had a profound effect on their capacity to degrade exogenous H(2)O(2). We determined the kinetics of H(2)O(2) breakdown by growing yeast cells under different conditions and accordingly selected an appropriate media composition and range of time points for isolating RNA for hybridization. Microarray analysis revealed a robust transient transcriptional response and the intensity of the global response was consistent with the kinetics of H(2)O(2) breakdown by treated cells. Gene ontology analysis of differentially expressed genes related to oxidation-reduction, metabolic process and protein catabolic processes identified potential roles of mitochondrial function and protein ubiquitination in oxidative stress resistance. Interestingly, the metabolic pathway adaptation of C. neoformans to H(2)O(2) treatment was remarkably distinct from the response of other fungal organisms to oxidative stress. We also identified the induction of an antifungal drug resistance response upon the treatment of C. neoformans with H(2)O(2). These results highlight the complexity of the oxidative stress response and offer possible new avenues for improving our understanding of mechanisms of oxidative stress resistance in C. neoformans. Public Library of Science 2013-01-28 /pmc/articles/PMC3557267/ /pubmed/23383070 http://dx.doi.org/10.1371/journal.pone.0055110 Text en © 2013 Upadhya et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Upadhya, Rajendra Campbell, Leona T. Donlin, Maureen J. Aurora, Rajeev Lodge, Jennifer K. Global Transcriptome Profile of Cryptococcus neoformans during Exposure to Hydrogen Peroxide Induced Oxidative Stress |
title | Global Transcriptome Profile of Cryptococcus neoformans during Exposure to Hydrogen Peroxide Induced Oxidative Stress |
title_full | Global Transcriptome Profile of Cryptococcus neoformans during Exposure to Hydrogen Peroxide Induced Oxidative Stress |
title_fullStr | Global Transcriptome Profile of Cryptococcus neoformans during Exposure to Hydrogen Peroxide Induced Oxidative Stress |
title_full_unstemmed | Global Transcriptome Profile of Cryptococcus neoformans during Exposure to Hydrogen Peroxide Induced Oxidative Stress |
title_short | Global Transcriptome Profile of Cryptococcus neoformans during Exposure to Hydrogen Peroxide Induced Oxidative Stress |
title_sort | global transcriptome profile of cryptococcus neoformans during exposure to hydrogen peroxide induced oxidative stress |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3557267/ https://www.ncbi.nlm.nih.gov/pubmed/23383070 http://dx.doi.org/10.1371/journal.pone.0055110 |
work_keys_str_mv | AT upadhyarajendra globaltranscriptomeprofileofcryptococcusneoformansduringexposuretohydrogenperoxideinducedoxidativestress AT campbellleonat globaltranscriptomeprofileofcryptococcusneoformansduringexposuretohydrogenperoxideinducedoxidativestress AT donlinmaureenj globaltranscriptomeprofileofcryptococcusneoformansduringexposuretohydrogenperoxideinducedoxidativestress AT aurorarajeev globaltranscriptomeprofileofcryptococcusneoformansduringexposuretohydrogenperoxideinducedoxidativestress AT lodgejenniferk globaltranscriptomeprofileofcryptococcusneoformansduringexposuretohydrogenperoxideinducedoxidativestress |