Cargando…
Mesalamine modulates intercellular adhesion through inhibition of p-21 activated kinase-1
Mesalamine (5-ASA) is widely used for the treatment of ulcerative colitis, a remitting condition characterized by chronic inflammation of the colon. Knowledge about the molecular and cellular targets of 5-ASA is limited and a clear understanding of its activity in intestinal homeostasis and interfer...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3557386/ https://www.ncbi.nlm.nih.gov/pubmed/23146664 http://dx.doi.org/10.1016/j.bcp.2012.10.026 |
_version_ | 1782257315031810048 |
---|---|
author | Khare, Vineeta Lyakhovich, Alex Dammann, Kyle Lang, Michaela Borgmann, Melanie Tichy, Boris Pospisilova, Sarka Luciani, Gloria Campregher, Christoph Evstatiev, Rayko Pflueger, Maren Hundsberger, Harald Gasche, Christoph |
author_facet | Khare, Vineeta Lyakhovich, Alex Dammann, Kyle Lang, Michaela Borgmann, Melanie Tichy, Boris Pospisilova, Sarka Luciani, Gloria Campregher, Christoph Evstatiev, Rayko Pflueger, Maren Hundsberger, Harald Gasche, Christoph |
author_sort | Khare, Vineeta |
collection | PubMed |
description | Mesalamine (5-ASA) is widely used for the treatment of ulcerative colitis, a remitting condition characterized by chronic inflammation of the colon. Knowledge about the molecular and cellular targets of 5-ASA is limited and a clear understanding of its activity in intestinal homeostasis and interference with neoplastic progression is lacking. We sought to identify molecular pathways interfered by 5-ASA, using CRC cell lines with different genetic background. Microarray was performed for gene expression profile of 5-ASA-treated and untreated cells (HCT116 and HT29). Filtering and analysis of data identified three oncogenic pathways interfered by 5-ASA: MAPK/ERK pathway, cell adhesion and β-catenin/Wnt signaling. PAK1 emerged as a consensus target of 5-ASA, orchestrating these pathways. We further investigated the effect of 5-ASA on cell adhesion. 5-ASA increased cell adhesion which was measured by cell adhesion assay and transcellular-resistance measurement. Moreover, 5-ASA treatment restored membranous expression of adhesion molecules E-cadherin and β-catenin. Role of PAK1 as a mediator of mesalamine activity was validated in vitro and in vivo. Inhibition of PAK1 by RNA interference also increased cell adhesion. PAK1 expression was elevated in APC(min) polyps and 5-ASA treatment reduced its expression. Our data demonstrates novel pharmacological mechanism of mesalamine in modulation of cell adhesion and role of PAK1 in APC(min) polyposis. We propose that inhibition of PAK1 expression by 5-ASA can impede with neoplastic progression in colorectal carcinogenesis. The mechanism of PAK1 inhibition and induction of membranous translocation of adhesion proteins by 5-ASA might be independent of its known anti-inflammatory action. |
format | Online Article Text |
id | pubmed-3557386 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Elsevier Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-35573862013-01-29 Mesalamine modulates intercellular adhesion through inhibition of p-21 activated kinase-1 Khare, Vineeta Lyakhovich, Alex Dammann, Kyle Lang, Michaela Borgmann, Melanie Tichy, Boris Pospisilova, Sarka Luciani, Gloria Campregher, Christoph Evstatiev, Rayko Pflueger, Maren Hundsberger, Harald Gasche, Christoph Biochem Pharmacol Article Mesalamine (5-ASA) is widely used for the treatment of ulcerative colitis, a remitting condition characterized by chronic inflammation of the colon. Knowledge about the molecular and cellular targets of 5-ASA is limited and a clear understanding of its activity in intestinal homeostasis and interference with neoplastic progression is lacking. We sought to identify molecular pathways interfered by 5-ASA, using CRC cell lines with different genetic background. Microarray was performed for gene expression profile of 5-ASA-treated and untreated cells (HCT116 and HT29). Filtering and analysis of data identified three oncogenic pathways interfered by 5-ASA: MAPK/ERK pathway, cell adhesion and β-catenin/Wnt signaling. PAK1 emerged as a consensus target of 5-ASA, orchestrating these pathways. We further investigated the effect of 5-ASA on cell adhesion. 5-ASA increased cell adhesion which was measured by cell adhesion assay and transcellular-resistance measurement. Moreover, 5-ASA treatment restored membranous expression of adhesion molecules E-cadherin and β-catenin. Role of PAK1 as a mediator of mesalamine activity was validated in vitro and in vivo. Inhibition of PAK1 by RNA interference also increased cell adhesion. PAK1 expression was elevated in APC(min) polyps and 5-ASA treatment reduced its expression. Our data demonstrates novel pharmacological mechanism of mesalamine in modulation of cell adhesion and role of PAK1 in APC(min) polyposis. We propose that inhibition of PAK1 expression by 5-ASA can impede with neoplastic progression in colorectal carcinogenesis. The mechanism of PAK1 inhibition and induction of membranous translocation of adhesion proteins by 5-ASA might be independent of its known anti-inflammatory action. Elsevier Science 2013-01-15 /pmc/articles/PMC3557386/ /pubmed/23146664 http://dx.doi.org/10.1016/j.bcp.2012.10.026 Text en © 2013 Elsevier Inc. https://creativecommons.org/licenses/by-nc-nd/3.0/ Open Access under CC BY-NC-ND 3.0 (https://creativecommons.org/licenses/by-nc-nd/3.0/) license |
spellingShingle | Article Khare, Vineeta Lyakhovich, Alex Dammann, Kyle Lang, Michaela Borgmann, Melanie Tichy, Boris Pospisilova, Sarka Luciani, Gloria Campregher, Christoph Evstatiev, Rayko Pflueger, Maren Hundsberger, Harald Gasche, Christoph Mesalamine modulates intercellular adhesion through inhibition of p-21 activated kinase-1 |
title | Mesalamine modulates intercellular adhesion through inhibition of p-21 activated kinase-1 |
title_full | Mesalamine modulates intercellular adhesion through inhibition of p-21 activated kinase-1 |
title_fullStr | Mesalamine modulates intercellular adhesion through inhibition of p-21 activated kinase-1 |
title_full_unstemmed | Mesalamine modulates intercellular adhesion through inhibition of p-21 activated kinase-1 |
title_short | Mesalamine modulates intercellular adhesion through inhibition of p-21 activated kinase-1 |
title_sort | mesalamine modulates intercellular adhesion through inhibition of p-21 activated kinase-1 |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3557386/ https://www.ncbi.nlm.nih.gov/pubmed/23146664 http://dx.doi.org/10.1016/j.bcp.2012.10.026 |
work_keys_str_mv | AT kharevineeta mesalaminemodulatesintercellularadhesionthroughinhibitionofp21activatedkinase1 AT lyakhovichalex mesalaminemodulatesintercellularadhesionthroughinhibitionofp21activatedkinase1 AT dammannkyle mesalaminemodulatesintercellularadhesionthroughinhibitionofp21activatedkinase1 AT langmichaela mesalaminemodulatesintercellularadhesionthroughinhibitionofp21activatedkinase1 AT borgmannmelanie mesalaminemodulatesintercellularadhesionthroughinhibitionofp21activatedkinase1 AT tichyboris mesalaminemodulatesintercellularadhesionthroughinhibitionofp21activatedkinase1 AT pospisilovasarka mesalaminemodulatesintercellularadhesionthroughinhibitionofp21activatedkinase1 AT lucianigloria mesalaminemodulatesintercellularadhesionthroughinhibitionofp21activatedkinase1 AT campregherchristoph mesalaminemodulatesintercellularadhesionthroughinhibitionofp21activatedkinase1 AT evstatievrayko mesalaminemodulatesintercellularadhesionthroughinhibitionofp21activatedkinase1 AT pfluegermaren mesalaminemodulatesintercellularadhesionthroughinhibitionofp21activatedkinase1 AT hundsbergerharald mesalaminemodulatesintercellularadhesionthroughinhibitionofp21activatedkinase1 AT gaschechristoph mesalaminemodulatesintercellularadhesionthroughinhibitionofp21activatedkinase1 |