Cargando…

Alkylation induced colon tumorigenesis in mice deficient in the Mgmt and Msh6 proteins

O(6)-methylguanine DNA methyltransferase (MGMT) suppresses mutations and cell death that result from alkylation damage. MGMT expression is lost by epigenetic silencing in a variety of human cancers including nearly half of sporadic colorectal cancers, suggesting that this loss maybe causal. Using mi...

Descripción completa

Detalles Bibliográficos
Autores principales: Bugni, James M., Meira, Lisiane B., Samson, Leona D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3557788/
https://www.ncbi.nlm.nih.gov/pubmed/19029948
http://dx.doi.org/10.1038/onc.2008.426
Descripción
Sumario:O(6)-methylguanine DNA methyltransferase (MGMT) suppresses mutations and cell death that result from alkylation damage. MGMT expression is lost by epigenetic silencing in a variety of human cancers including nearly half of sporadic colorectal cancers, suggesting that this loss maybe causal. Using mice with a targeted disruption of the Mgmt gene we tested whether Mgmt protects against azoxymethane (AOM) induced colonic aberrant crypt foci (ACF), against AOM and dextran sulfate sodium (DSS) induced colorectal adenomas, and against spontaneous intestinal adenomas in Apc(Min) mice. We also examined the genetic interaction of the Mgmt null gene with a DNA mismatch repair null gene, namely Msh6. Both Mgmt and Msh6 independently suppress AOM-induced ACF, and combination of the two mutant alleles had a multiplicative effect. This synergism can be explained entirely by the suppression of alkylation-induced apoptosis when Msh6 is absent. In addition, following AOM+DSS treatment Mgmt protected against adenoma formation to the same degree as it protected against AOM-induced ACF formation. Finally, Mgmt deficiency did not affect spontaneous intestinal adenoma development in Apc(Min/+) mice, suggesting that Mgmt suppresses intestinal cancer associated with exogenous alkylating agents, and that endogenous alkylation does not contribute to the rapid tumor development seen in Apc(Min/+) mice.