Cargando…

Optimal vaccination schedule search using genetic algorithm over MPI technology

BACKGROUND: Immunological strategies that achieve the prevention of tumor growth are based on the presumption that the immune system, if triggered before tumor onset, could be able to defend from specific cancers. In supporting this assertion, in the last decade active immunization approaches preven...

Descripción completa

Detalles Bibliográficos
Autores principales: Calonaci, Cristiano, Chiacchio, Ferdinando, Pappalardo, Francesco
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3558354/
https://www.ncbi.nlm.nih.gov/pubmed/23148787
http://dx.doi.org/10.1186/1472-6947-12-129
Descripción
Sumario:BACKGROUND: Immunological strategies that achieve the prevention of tumor growth are based on the presumption that the immune system, if triggered before tumor onset, could be able to defend from specific cancers. In supporting this assertion, in the last decade active immunization approaches prevented some virus-related cancers in humans. An immunopreventive cell vaccine for the non-virus-related human breast cancer has been recently developed. This vaccine, called Triplex, targets the HER-2-neu oncogene in HER-2/neu transgenic mice and has shown to almost completely prevent HER-2/neu-driven mammary carcinogenesis when administered with an intensive and life-long schedule. METHODS: To better understand the preventive efficacy of the Triplex vaccine in reduced schedules we employed a computational approach. The computer model developed allowed us to test in silico specific vaccination schedules in the quest for optimality. Specifically here we present a parallel genetic algorithm able to suggest optimal vaccination schedule. RESULTS & CONCLUSIONS: The enormous complexity of combinatorial space to be explored makes this approach the only possible one. The suggested schedule was then tested in vivo, giving good results. Finally, biologically relevant outcomes of optimization are presented.