Cargando…

Membrane-displayed somatostatin activates somatostatin receptor subtype-2 heterologously produced in Saccharomyces cerevisiae

The G-protein-coupled receptor (GPCR) superfamily, which includes somatostatin receptors (SSTRs), is one of the most important drug targets in the pharmaceutical industry. The yeast Saccharomyces cerevisiae is an attractive host for the ligand screening of human GPCRs. Here, we demonstrate the utili...

Descripción completa

Detalles Bibliográficos
Autores principales: Hara, Keisuke, Shigemori, Tomohiro, Kuroda, Kouichi, Ueda, Mitsuyoshi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3558460/
https://www.ncbi.nlm.nih.gov/pubmed/23193953
http://dx.doi.org/10.1186/2191-0855-2-63
Descripción
Sumario:The G-protein-coupled receptor (GPCR) superfamily, which includes somatostatin receptors (SSTRs), is one of the most important drug targets in the pharmaceutical industry. The yeast Saccharomyces cerevisiae is an attractive host for the ligand screening of human GPCRs. Here, we demonstrate the utility of the technology that was developed for displaying peptide ligands on yeast plasma membrane, termed “PepDisplay”, which triggers signal transduction upon GPCR activation. A yeast strain that heterologously produced human somatostatin receptor subtype-2 (SSTR2) and chimeric Gα protein was constructed along with membrane-displayed somatostatin; somatostatin was displayed on the yeast plasma membrane by linking it to the anchoring domain of the glycosylphosphatidylinositol anchored plasma membrane protein Yps1p. We demonstrate that the somatostatin displayed on the plasma membrane successfully activated human SSTR2 in S. cerevisiae. The methodology presented here provides a new platform for identifying novel peptide ligands for both liganded and orphan mammalian GPCRs.