Cargando…
In vitro activity (MICs and rate of kill) of AFN-1252, a novel FabI inhibitor, in the presence of serum and in combination with other antibiotics
AFN-1252 is a novel inhibitor of FabI, an essential enzyme in fatty acid biosynthesis in Staphylococcus spp. AFN-1252 exhibits typical MIC(90) values of ⩽0·015 μg/ml against diverse clinical isolates of S. aureus, oral absorption, long elimination half-live and efficacy in animal models. We now repo...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Maney Publishing
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3558989/ https://www.ncbi.nlm.nih.gov/pubmed/23433440 http://dx.doi.org/10.1179/1973947812Y.0000000063 |
Sumario: | AFN-1252 is a novel inhibitor of FabI, an essential enzyme in fatty acid biosynthesis in Staphylococcus spp. AFN-1252 exhibits typical MIC(90) values of ⩽0·015 μg/ml against diverse clinical isolates of S. aureus, oral absorption, long elimination half-live and efficacy in animal models. We now report high binding (∼95%) to serum proteins of mouse, rat, dog and humans, associated with an eight-fold increase in minimal inhibitory concentration (MIC) and which may be responsible for the long elimination half-lives on pharmacokinetic studies. Unlike daptomycin, AFN-1252 activity is not reduced in the presence of lung surfactant. AFN-1252 exhibits a short post-antibiotic effect of 1·1 hours against methicillin-susceptible S. aureus (MSSA) and methicillin-resistant S. aureus (MRSA) following a 4-hour exposure period. The AFN-1252 unique spectrum of activity is not compromised by interactions with major antibiotic classes, but demonstrates synergy with low concentrations of gentamicin against MSSA and MRSA. These studies support the continued investigation of AFN-1252 as a targeted therapeutic for staphylococcal infections. |
---|