Cargando…
Biomimetic Construction of Large Engineered Bone Using Hemoperfusion and Cyto-Capture in Traumatic Bone Defect
Due to lack of blood vessel systems, only a few tissues, such as skin, cartilage, and cornea, have been successfully constructed in vivo. Anticoagulative scaffolds have been used in drug-eluting stent systems both in animal studies and clinical therapies, as in the medicinal leech therapy used to sa...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Mary Ann Liebert, Inc.
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3559229/ https://www.ncbi.nlm.nih.gov/pubmed/23516672 http://dx.doi.org/10.1089/biores.2012.0247 |
Sumario: | Due to lack of blood vessel systems, only a few tissues, such as skin, cartilage, and cornea, have been successfully constructed in vivo. Anticoagulative scaffolds have been used in drug-eluting stent systems both in animal studies and clinical therapies, as in the medicinal leech therapy used to salvage venous-congested microvascular free flaps improved perfusion inspired us to tackle this hurdle in bone tissue engineering. We hypothesize that a combination of bone marrow as the blood supply and a heparin/chitosan-coated acellular bone matrix that acts like hirudin, together with a vacuum-assisted closure therapy system, would provide blood perfusion to the scaffold. Using these methods, a biomimetically engineered bone construct would facilitate clinical translation in bone tissue engineering and offer new therapeutic strategies for reconstructing large bone defects if the hypothesis proves to be practical. |
---|