Cargando…
On the Evolutionary History, Population Genetics and Diversity among Isolates of Salmonella Enteritidis PFGE Pattern JEGX01.0004
Facile laboratory tools are needed to augment identification in contamination events to trace the contamination back to the source (traceback) of Salmonella enterica subsp. enterica serovar Enteritidis (S. Enteritidis). Understanding the evolution and diversity within and among outbreak strains is t...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3559427/ https://www.ncbi.nlm.nih.gov/pubmed/23383127 http://dx.doi.org/10.1371/journal.pone.0055254 |
_version_ | 1782257577804955648 |
---|---|
author | Allard, Marc W. Luo, Yan Strain, Errol Pettengill, James Timme, Ruth Wang, Charles Li, Cong Keys, Christine E. Zheng, Jie Stones, Robert Wilson, Mark R. Musser, Steven M. Brown, Eric W. |
author_facet | Allard, Marc W. Luo, Yan Strain, Errol Pettengill, James Timme, Ruth Wang, Charles Li, Cong Keys, Christine E. Zheng, Jie Stones, Robert Wilson, Mark R. Musser, Steven M. Brown, Eric W. |
author_sort | Allard, Marc W. |
collection | PubMed |
description | Facile laboratory tools are needed to augment identification in contamination events to trace the contamination back to the source (traceback) of Salmonella enterica subsp. enterica serovar Enteritidis (S. Enteritidis). Understanding the evolution and diversity within and among outbreak strains is the first step towards this goal. To this end, we collected 106 new S. Enteriditis isolates within S. Enteriditis Pulsed-Field Gel Electrophoresis (PFGE) pattern JEGX01.0004 and close relatives, and determined their genome sequences. Sources for these isolates spanned food, clinical and environmental farm sources collected during the 2010 S. Enteritidis shell egg outbreak in the United States along with closely related serovars, S. Dublin, S. Gallinarum biovar Pullorum and S. Gallinarum. Despite the highly homogeneous structure of this population, S. Enteritidis isolates examined in this study revealed thousands of SNP differences and numerous variable genes (n = 366). Twenty-one of these genes from the lineages leading to outbreak-associated samples had nonsynonymous (causing amino acid changes) changes and five genes are putatively involved in known Salmonella virulence pathways. While chromosome synteny and genome organization appeared to be stable among these isolates, genome size differences were observed due to variation in the presence or absence of several phages and plasmids, including phage RE-2010, phage P125109, plasmid pSEEE3072_19 (similar to pSENV), plasmid pOU1114 and two newly observed mobile plasmid elements pSEEE1729_15 and pSEEE0956_35. These differences produced modifications to the assembled bases for these draft genomes in the size range of approximately 4.6 to 4.8 mbp, with S. Dublin being larger (∼4.9 mbp) and S. Gallinarum smaller (4.55 mbp) when compared to S. Enteritidis. Finally, we identified variable S. Enteritidis genes associated with virulence pathways that may be useful markers for the development of rapid surveillance and typing methods, potentially aiding in traceback efforts during future outbreaks involving S. Enteritidis PFGE pattern JEGX01.0004. |
format | Online Article Text |
id | pubmed-3559427 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-35594272013-02-04 On the Evolutionary History, Population Genetics and Diversity among Isolates of Salmonella Enteritidis PFGE Pattern JEGX01.0004 Allard, Marc W. Luo, Yan Strain, Errol Pettengill, James Timme, Ruth Wang, Charles Li, Cong Keys, Christine E. Zheng, Jie Stones, Robert Wilson, Mark R. Musser, Steven M. Brown, Eric W. PLoS One Research Article Facile laboratory tools are needed to augment identification in contamination events to trace the contamination back to the source (traceback) of Salmonella enterica subsp. enterica serovar Enteritidis (S. Enteritidis). Understanding the evolution and diversity within and among outbreak strains is the first step towards this goal. To this end, we collected 106 new S. Enteriditis isolates within S. Enteriditis Pulsed-Field Gel Electrophoresis (PFGE) pattern JEGX01.0004 and close relatives, and determined their genome sequences. Sources for these isolates spanned food, clinical and environmental farm sources collected during the 2010 S. Enteritidis shell egg outbreak in the United States along with closely related serovars, S. Dublin, S. Gallinarum biovar Pullorum and S. Gallinarum. Despite the highly homogeneous structure of this population, S. Enteritidis isolates examined in this study revealed thousands of SNP differences and numerous variable genes (n = 366). Twenty-one of these genes from the lineages leading to outbreak-associated samples had nonsynonymous (causing amino acid changes) changes and five genes are putatively involved in known Salmonella virulence pathways. While chromosome synteny and genome organization appeared to be stable among these isolates, genome size differences were observed due to variation in the presence or absence of several phages and plasmids, including phage RE-2010, phage P125109, plasmid pSEEE3072_19 (similar to pSENV), plasmid pOU1114 and two newly observed mobile plasmid elements pSEEE1729_15 and pSEEE0956_35. These differences produced modifications to the assembled bases for these draft genomes in the size range of approximately 4.6 to 4.8 mbp, with S. Dublin being larger (∼4.9 mbp) and S. Gallinarum smaller (4.55 mbp) when compared to S. Enteritidis. Finally, we identified variable S. Enteritidis genes associated with virulence pathways that may be useful markers for the development of rapid surveillance and typing methods, potentially aiding in traceback efforts during future outbreaks involving S. Enteritidis PFGE pattern JEGX01.0004. Public Library of Science 2013-01-30 /pmc/articles/PMC3559427/ /pubmed/23383127 http://dx.doi.org/10.1371/journal.pone.0055254 Text en https://creativecommons.org/publicdomain/zero/1.0/ This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration, which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. |
spellingShingle | Research Article Allard, Marc W. Luo, Yan Strain, Errol Pettengill, James Timme, Ruth Wang, Charles Li, Cong Keys, Christine E. Zheng, Jie Stones, Robert Wilson, Mark R. Musser, Steven M. Brown, Eric W. On the Evolutionary History, Population Genetics and Diversity among Isolates of Salmonella Enteritidis PFGE Pattern JEGX01.0004 |
title | On the Evolutionary History, Population Genetics and Diversity among Isolates of Salmonella Enteritidis PFGE Pattern JEGX01.0004 |
title_full | On the Evolutionary History, Population Genetics and Diversity among Isolates of Salmonella Enteritidis PFGE Pattern JEGX01.0004 |
title_fullStr | On the Evolutionary History, Population Genetics and Diversity among Isolates of Salmonella Enteritidis PFGE Pattern JEGX01.0004 |
title_full_unstemmed | On the Evolutionary History, Population Genetics and Diversity among Isolates of Salmonella Enteritidis PFGE Pattern JEGX01.0004 |
title_short | On the Evolutionary History, Population Genetics and Diversity among Isolates of Salmonella Enteritidis PFGE Pattern JEGX01.0004 |
title_sort | on the evolutionary history, population genetics and diversity among isolates of salmonella enteritidis pfge pattern jegx01.0004 |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3559427/ https://www.ncbi.nlm.nih.gov/pubmed/23383127 http://dx.doi.org/10.1371/journal.pone.0055254 |
work_keys_str_mv | AT allardmarcw ontheevolutionaryhistorypopulationgeneticsanddiversityamongisolatesofsalmonellaenteritidispfgepatternjegx010004 AT luoyan ontheevolutionaryhistorypopulationgeneticsanddiversityamongisolatesofsalmonellaenteritidispfgepatternjegx010004 AT strainerrol ontheevolutionaryhistorypopulationgeneticsanddiversityamongisolatesofsalmonellaenteritidispfgepatternjegx010004 AT pettengilljames ontheevolutionaryhistorypopulationgeneticsanddiversityamongisolatesofsalmonellaenteritidispfgepatternjegx010004 AT timmeruth ontheevolutionaryhistorypopulationgeneticsanddiversityamongisolatesofsalmonellaenteritidispfgepatternjegx010004 AT wangcharles ontheevolutionaryhistorypopulationgeneticsanddiversityamongisolatesofsalmonellaenteritidispfgepatternjegx010004 AT licong ontheevolutionaryhistorypopulationgeneticsanddiversityamongisolatesofsalmonellaenteritidispfgepatternjegx010004 AT keyschristinee ontheevolutionaryhistorypopulationgeneticsanddiversityamongisolatesofsalmonellaenteritidispfgepatternjegx010004 AT zhengjie ontheevolutionaryhistorypopulationgeneticsanddiversityamongisolatesofsalmonellaenteritidispfgepatternjegx010004 AT stonesrobert ontheevolutionaryhistorypopulationgeneticsanddiversityamongisolatesofsalmonellaenteritidispfgepatternjegx010004 AT wilsonmarkr ontheevolutionaryhistorypopulationgeneticsanddiversityamongisolatesofsalmonellaenteritidispfgepatternjegx010004 AT musserstevenm ontheevolutionaryhistorypopulationgeneticsanddiversityamongisolatesofsalmonellaenteritidispfgepatternjegx010004 AT brownericw ontheevolutionaryhistorypopulationgeneticsanddiversityamongisolatesofsalmonellaenteritidispfgepatternjegx010004 |