Cargando…

FoxQ1 Promotes Glioma Cells Proliferation and Migration by Regulating NRXN3 Expression

BACKGROUND: Forkhead box Q1 (FoxQ1) is a member of the forkhead transcription factor family, and it has recently been found to participate in cancer development. However, whether FoxQ1 expression contributes to glioma development and progression is not known. We investigate FoxQ1 expression in gliom...

Descripción completa

Detalles Bibliográficos
Autores principales: Sun, Hong-Tao, Cheng, Shi-Xiang, Tu, Yue, Li, Xiao-Hong, Zhang, Sai
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3559546/
https://www.ncbi.nlm.nih.gov/pubmed/23383267
http://dx.doi.org/10.1371/journal.pone.0055693
Descripción
Sumario:BACKGROUND: Forkhead box Q1 (FoxQ1) is a member of the forkhead transcription factor family, and it has recently been found to participate in cancer development. However, whether FoxQ1 expression contributes to glioma development and progression is not known. We investigate FoxQ1 expression in gliomas and the role of FoxQ1 during tumorgenesis. METHODS: Reverse transcription quantitative real-time PCR (RT-qPCR) and Western blot were used to determine the FoxQ1 and Neurexins 3 (NRXN3) expression in gliomas. Chromatin immunoprecipitation (ChIP) and luciferase assays were used to determine the regulation between FoxQ1 and NRXN3. We established depleted FoxQ1 stable clones in U-87MG cells and overexpressed FoxQ1 stable clones in SW1088 cells. MTT and transwell were used to evaluate the ability of proliferation and migration, respectively. RESULTS: FoxQ1 mRNA and protein were up-regulated in gliomas and negatively related to the NRXN3 expression (r = −0.373, P = 0.042). FoxQ1 directly binds to NRXN3 promoter region and suppresses the promoter activity. Furthermore, the ability of proliferation and migration is reduced in depleted FoxQ1 cells. CONCLUSION: FoxQ1 promotes glioma cell proliferation and migration by down-regulation of NRXN3 expression.