Cargando…

New tools for studying osteoarthritis genetics in zebrafish

OBJECTIVE: Increasing evidence points to a strong genetic component to osteoarthritis (OA) and that certain changes that occur in osteoarthritic cartilage recapitulate the developmental process of endochondral ossification. As zebrafish are a well validated model for genetic studies and developmenta...

Descripción completa

Detalles Bibliográficos
Autores principales: Mitchell, R.E., Huitema, L.F.A., Skinner, R.E.H., Brunt, L.H., Severn, C., Schulte-Merker, S., Hammond, C.L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: W.B. Saunders For The Osteoarthritis Research Society 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3560059/
https://www.ncbi.nlm.nih.gov/pubmed/23159952
http://dx.doi.org/10.1016/j.joca.2012.11.004
Descripción
Sumario:OBJECTIVE: Increasing evidence points to a strong genetic component to osteoarthritis (OA) and that certain changes that occur in osteoarthritic cartilage recapitulate the developmental process of endochondral ossification. As zebrafish are a well validated model for genetic studies and developmental biology, our objective was to establish the spatiotemporal expression pattern of a number of OA susceptibility genes in the larval zebrafish providing a platform for functional studies into the role of these genes in OA. DESIGN: We identified the zebrafish homologues for Mcf2l, Gdf5, PthrP/Pthlh, Col9a2, and Col10a1 from the Ensembl genome browser. Labelled probes were generated for these genes and in situ hybridisations were performed on wild type zebrafish larvae. In addition, we generated transgenic reporter lines by modification of bacterial artificial chromosomes (BACs) containing full length promoters for col2a1 and col10a1. RESULTS: For the first time, we show the spatiotemporal expression pattern of Mcf2l. Furthermore, we show that all six putative OA genes are dynamically expressed during zebrafish larval development, and that all are expressed in the developing skeletal system. Furthermore, we demonstrate that the transgenic reporters we have generated for col2a1 and col10a1 can be used to visualise chondrocyte hypertrophy in vivo. CONCLUSION: In this study we describe the expression pattern of six OA susceptibility genes in zebrafish larvae and the generation of two new transgenic lines marking chondrocytes at different stages of maturation. Moreover, the tools used demonstrate the utility of the zebrafish model for functional studies on genes identified as playing a role in OA.