Cargando…
Effect of Bending Rigidity on the Knotting of a Polymer under Tension
[Image: see text] A coarse-grained computational model is used to investigate how the bending rigidity of a polymer under tension affects the formation of a trefoil knot. Thermodynamic integration techniques are applied to demonstrate that the free-energy cost of forming a knot has a minimum at nonz...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2012
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3560425/ https://www.ncbi.nlm.nih.gov/pubmed/23378936 http://dx.doi.org/10.1021/mz300493d |
Sumario: | [Image: see text] A coarse-grained computational model is used to investigate how the bending rigidity of a polymer under tension affects the formation of a trefoil knot. Thermodynamic integration techniques are applied to demonstrate that the free-energy cost of forming a knot has a minimum at nonzero bending rigidity. The position of the minimum exhibits a power-law dependence on the applied tension. For knotted polymers with nonuniform bending rigidity, the knots preferentially localize in the region with a bending rigidity that minimizes the free energy. |
---|